scholarly journals Activation of ADP-ribosylation factor by Golgi membranes. Evidence for a brefeldin A- and protease-sensitive activating factor on Golgi membranes

1993 ◽  
Vol 268 (13) ◽  
pp. 9555-9563
Author(s):  
P.A. Randazzo ◽  
Y.C. Yang ◽  
C. Rulka ◽  
R.A. Kahn
1994 ◽  
Vol 124 (4) ◽  
pp. 415-424 ◽  
Author(s):  
Z Elazar ◽  
L Orci ◽  
J Ostermann ◽  
M Amherdt ◽  
G Tanigawa ◽  
...  

The coat proteins required for budding COP-coated vesicles from Golgi membranes, coatomer and ADP-ribosylation factor (ARF) protein, are shown to be required to reconstitute the orderly process of transport between Golgi cisternae in which fusion of transport vesicles begins only after budding ends. When either coat protein is omitted, fusion is uncoupled from budding-donor and acceptor compartments pair directly without an intervening vesicle. Coupling may therefore results from the sequestration of fusogenic membrane proteins into assembling coated vesicles that are only exposed when the coat is removed after budding is complete. This mechanism of coupling explains the phenomenon of "retrograde transport" triggered by uncouplers such as the drug brefeldin A.


2000 ◽  
Vol 275 (25) ◽  
pp. 19050-19059 ◽  
Author(s):  
Maria Esther Martı́n ◽  
Josefina Hidalgo ◽  
Jose Luis Rosa ◽  
Pascal Crottet ◽  
Angel Velasco

2005 ◽  
Vol 94 (2) ◽  
pp. 1597-1605 ◽  
Author(s):  
Kwon-Seok Chae ◽  
Kwang-Seok Oh ◽  
Stuart E. Dryer

In developing ciliary ganglion (CG) neurons, movement of functional large-conductance (BK type) Ca2+-activated K+ ( KCa) channels to the cell surface is stimulated by the endogenous growth factors TGFβ1 and β-neuregulin-1 (NRG1). Here we show that a brief NRG1 treatment (0.5–1.5 h) mobilizes KCa channels in a post-Golgi compartment, but longer treatments (>3.5 h) mobilize KCa channels located in the endoplasmic reticulum or Golgi apparatus. Specifically, the effects of 3.5 h NRG1 treatment were completely blocked by treatments that disrupt Golgi apparatus function. These include inhibition of microtubules, or inhibition of the ADP-ribosylation factor-1 (ARF1) system by brefeldin A, by over-expression of dominant-negative ARF1, or over-expression of an ARF1 GTPase-activating protein that blocks ARF1 cycling between GTP- and GDP-bound states. These treatments had no effect on stimulation of KCa evoked by 1.5 h treatment with NRG1, indicating that short-term responses to NRG1 do not require an intact Golgi apparatus. By contrast, both the acute and sustained effects of NRG1 were inhibited by treatments that block trafficking processes that occur close to the plasma membrane. Thus mobilization of KCa was blocked by treatments than inhibit ADP-ribosylation factor-6 (ARF6) signaling, including overexpression of dominant-negative ARF6, dominant-negative ARNO, or dominant-negative phospholipase D1. TGFβ1, the effects of which on KCa are much slower in onset, is unable to selectively mobilize channels in the post-Golgi pool, and its effects on KCa are completely blocked by inhibition of microtubules, Golgi function and also by plasma membrane ARF6 and phospholipase D1 signaling.


1997 ◽  
Vol 138 (3) ◽  
pp. 505-515 ◽  
Author(s):  
Victor Faúndez ◽  
Jim-Tong Horng ◽  
Regis B. Kelly

Carrier vesicle generation from donor membranes typically progresses through a GTP-dependent recruitment of coats to membranes. Here we explore the role of ADP ribosylation factor (ARF) 1, one of the GTP-binding proteins that recruit coats, in the production of neuroendocrine synaptic vesicles (SVs) from PC12 cell membranes. Brefeldin A (BFA) strongly and reversibly inhibited SV formation in vivo in three different PC12 cell lines expressing vesicle-associated membrane protein–T Antigen derivatives. Other membrane traffic events remained unaffected by the drug, and the BFA effects were not mimicked by drugs known to interfere with formation of other classes of vesicles. The involvement of ARF proteins in the budding of SVs was addressed in a cell-free reconstitution system (Desnos, C., L. Clift-O'Grady, and R.B. Kelly. 1995. J. Cell Biol. 130:1041–1049). A peptide spanning the effector domain of human ARF1 (2–17) and recombinant ARF1 mutated in its GTPase activity, both inhibited the formation of SVs of the correct size. During in vitro incubation in the presence of the mutant ARFs, the labeled precursor membranes acquired different densities, suggesting that the two ARF mutations block at different biosynthetic steps. Cell-free SV formation in the presence of a high molecular weight, ARF-depleted fraction from brain cytosol was significantly enhanced by the addition of recombinant myristoylated native ARF1. Thus, the generation of SVs from PC12 cell membranes requires ARF and uses its GTPase activity, probably to regulate coating phenomena.


2001 ◽  
Vol 355 (2) ◽  
pp. 409-415 ◽  
Author(s):  
Walter BERÓN ◽  
Luis S. MAYORGA ◽  
Maria I. COLOMBO ◽  
Philip D. STAHL

Particle internalization in macrophages is followed by a complex maturation process. We have previously observed that proteins bound to phagocytosed particles are sorted from phagosomes into a heterogeneous population of vesicles that fuse with endosomes. However, the mechanism and the protein machinery involved in the formation of these phagosome-derived vesicles are largely unknown. It has been shown that vesicles coated with coat protein complex type I (COPI) have a role in both secretion and endocytosis. To address the possibility that COPI proteins might participate in the formation of phagosome-derived vesicles we studied the recruitment of β-COP to highly purified phagosomes. The binding of β-COP to phagosomal membranes was regulated by nucleotides and inhibited by brefeldin A (BFA). An ADP-ribosylation factor 1 (ARF1) mutant defective in GTP hydrolysis supported the binding of β-COP to phagosomes independently of added nucleotide. AlF4 and Gβγ subunits, agents known to modulate heterotrimeric G-protein activity, were tested in the β-COP binding assay. AlF4 increased β-COP association, whereas binding was inhibited by the addition of Gβγ subunits. Our results suggest that COP proteins are recruited to phagosomal membranes by a mechanism that involves heterotrimeric GTP-binding proteins and a BFA-sensitive ARF. In addition, our findings indicate that COPI proteins are involved in the recycling of components from phagosomes to the cell surface.


Sign in / Sign up

Export Citation Format

Share Document