scholarly journals Effect of Protein Kinase A Activity on the Association of ADP-ribosylation Factor 1 to Golgi Membranes

2000 ◽  
Vol 275 (25) ◽  
pp. 19050-19059 ◽  
Author(s):  
Maria Esther Martı́n ◽  
Josefina Hidalgo ◽  
Jose Luis Rosa ◽  
Pascal Crottet ◽  
Angel Velasco
1995 ◽  
Vol 306 (3) ◽  
pp. 765-769 ◽  
Author(s):  
R Levistre ◽  
M Berguerand ◽  
G Bereziat ◽  
J Masliah

Pretreatment of alveolar macrophages with cholera toxin inhibits the release of arachidonic acid induced by the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine. The results presented here show that cholera toxin might exert its inhibitory effect through the phosphorylation of Gi alpha by protein kinase A (PKA). (1) Gi-proteins from cells pretreated with cholera toxin showed parallel increases in their sensitivity to ADP-ribosylation by toxins in vitro and in Gi alpha phosphorylation. By contrast, the Gi alpha concentration was unchanged. (2) Cholera toxin pretreatment also decreased the functional activity of Gi, as assessed by the inhibition (80%) of agonist-induced binding of guanosine-5′-[gamma-thio]triphosphate (GTP[gamma S]). (3) These effects of cholera toxin were blocked by a specific PKA inhibitor, N-(2-[methyl-amino]ethyl)-3-isoquinolinesulphonamide dihydrochloride (H8) and mimicked by a cyclic AMP (cAMP) analogue and a phosphatase inhibitor. (4) Gi alpha was also phosphorylated in vitro by the catalytic subunit of PKA. In contrast with other cell systems, the stimulation of protein kinase C seems to have no effect on the sensitivity of Gi to ADP-ribosylation or on its phosphorylation. Therefore, the phosphorylation of Gi-proteins by PKA seems to be the actual target of the negative control of arachidonic acid release via the cAMP-mediated pathway.


1994 ◽  
Vol 300 (1) ◽  
pp. 133-139 ◽  
Author(s):  
G Fritz ◽  
K Aktories

Specific [32P]ADP-ribosylation by Clostridium botulinum exoenzyme C3 was used to study the involvement of phosphorylation in the regulation of the low-molecular-mass GTP-binding protein Rho. Dephosphorylation of CHO cell extracts by alkaline phosphatase treatment resulted in a 80-90% reduction in the C3-catalysed [32P]ADP-ribosylation of Rho proteins in both cytosolic and membrane fractions. Similar results were obtained after dephosphorylation with protein phosphatase type-1 from bovine retina, whereas type-2B and type-2C phosphatases had no effect on the level of subsequent [32P]ADP-ribosylation of Rho by C3. Incubation of CHO cell lysate under phosphorylation conditions increased the subsequent C3-mediated [32P]ADP-ribosylation of Rho proteins. The protein kinase inhibitors H7 and H9 had no effect on [32P]ADP-ribosylation at concentrations which are specific for inhibition of protein kinase A or C. Recombinant glutathione S-transferase-RhoA fusion protein (GST-RhoA) was phosphorylated by protein kinase A; however, the phosphorylation had no stimulatory effect on the ADP-ribosylation of GST-RhoA by C3. An approx. 48 kDa phosphoprotein was identified which bound specifically to recombinant GST-RhoA fusion protein. By gel-permeation chromatography, Rho-containing complexes of approx. 50 kDa and 130-170 kDa were detected. The ADP-ribosylation of Rho in the 130-170 kDa complex was reduced by alkaline phosphatase pretreatment. The data suggest that Rho activity is influenced by phosphorylation of Rho-associated regulatory factors. Phosphorylation/dephosphorylation of these Rho-regulating factors appears to alter the ability of Rho to serve as a substrate for C3-induced [32P]ADP-ribosylation.


Reproduction ◽  
2000 ◽  
pp. 377-383 ◽  
Author(s):  
L Leonardsen ◽  
A Wiersma ◽  
M Baltsen ◽  
AG Byskov ◽  
CY Andersen

The mitogen-activated protein kinase-dependent and the cAMP-protein kinase A-dependent signal transduction pathways were studied in cultured mouse oocytes during induced and spontaneous meiotic maturation. The role of the mitogen-activated protein kinase pathway was assessed using PD98059, which specifically inhibits mitogen-activated protein kinase 1 and 2 (that is, MEK1 and MEK2), which activates mitogen-activated protein kinase. The cAMP-dependent protein kinase was studied by treating oocytes with the protein kinase A inhibitor rp-cAMP. Inhibition of the mitogen-activated protein kinase pathway by PD98059 (25 micromol l(-1)) selectively inhibited the stimulatory effect on meiotic maturation by FSH and meiosis-activating sterol (that is, 4,4-dimethyl-5alpha-cholest-8,14, 24-triene-3beta-ol) in the presence of 4 mmol hypoxanthine l(-1), whereas spontaneous maturation in the absence of hypoxanthine was unaffected. This finding indicates that different signal transduction mechanisms are involved in induced and spontaneous maturation. The protein kinase A inhibitor rp-cAMP induced meiotic maturation in the presence of 4 mmol hypoxanthine l(-1), an effect that was additive to the maturation-promoting effect of FSH and meiosis-activating sterol, indicating that induced maturation also uses the cAMP-protein kinase A-dependent signal transduction pathway. In conclusion, induced and spontaneous maturation of mouse oocytes appear to use different signal transduction pathways.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2441-PUB ◽  
Author(s):  
QUAN PAN ◽  
YUNMEI CHEN ◽  
HUI YAN ◽  
WANBAO YANG ◽  
ZHENG SHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document