scholarly journals Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

1992 ◽  
Vol 267 (29) ◽  
pp. 20620-20629
Author(s):  
D.C. Metz ◽  
R.J. Patto ◽  
J.E. Mrozinski ◽  
R.T. Jensen ◽  
R.J. Turner ◽  
...  
1982 ◽  
Vol 242 (4) ◽  
pp. G423-G428 ◽  
Author(s):  
M. J. Collen ◽  
V. E. Sutliff ◽  
G. Z. Pan ◽  
J. D. Gardner

In dispersed acini from rat pancreas, secretagogues that act through or mimic the action of AMP [vasoactive intestinal peptide (VIP), secretin, or 8-bromo-AMP] caused a twofold increase in amylase secretion. Secretagogues that mobilize cellular calcium (carbamylcholine, C-terminal octapeptide of cholecystokinin, bombesin, or A23187) caused a sevenfold augmentation of the actions of VIP, secretin, or 8-bromo-cAMP on enzyme secretion. Carbamylcholine and the C-terminal octapeptide of cholecystokinin also augmented the action of VIP on amylase secretion from mouse pancreatic acini. Secretagogues that mobilize cellular calcium did not alter binding of 125I-VIP, cellular cAMP, or the increase in cellular cAMP caused by VIP or secretin. Similarly, secretagogues that increase cellular cAMP did not alter 45Ca outflux or the increase in 45Ca outflux caused by carbamylcholine, C-terminal octapeptide of cholecystokinin, bombesin, or A23187. These results indicate that in dispersed acini from rat pancreas there is postreceptor modulation of the actions of VIP and secretin on enzyme secretion by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the magnitude of the effect of VIP and secretin on enzyme secretion. This modulation, in turn, reflects the ability of cellular calcium, mobilized from intracellular stores, to amplify the action of cellular cAMP on the enzyme secretory process.


Pancreas ◽  
1993 ◽  
Vol 8 (4) ◽  
pp. 476-487 ◽  
Author(s):  
Wolfgang E. Schmidt ◽  
JÖRg Seebeck ◽  
Michael HÖCker ◽  
Rainer Schwarzhoff ◽  
Heiner SchÄFer ◽  
...  

1980 ◽  
Vol 239 (4) ◽  
pp. G272-G279 ◽  
Author(s):  
S. Abdelmoumene ◽  
J. D. Gardner

Incubating dispersed acini from guinea pig pancreas with cholecystokinin and then washing the cells to remove cholecystokinin reduced the subsequent stimulation of amylase secretion caused by pancreatic secretagogues, whose actions are mediated by release of cellular calcium (i.e., cholecystokinin, carbamylcholine, bombesin, litorin, physalaemin, and A23187), but did not alter the stimulation caused by secretagogues whose actions are mediated by cAMP (i.e., vasoactive intestinal peptide and secretin). This cholecystokinin-induced desensitization was reversible, and the onset of the process as well as its reversal were time- and temperature-dependent changes. The concentrations of cholecystokinin required to cause desensitization were greater than those required to cause maximal stimulation of amylase secretion, and this finding suggests that the submaximal stimulation of enzyme secretion seen with supramaximal concentrations of cholecystokinin may be caused by cholecystokinin-induced desensitization.


1994 ◽  
Vol 1220 (2) ◽  
pp. 199-208 ◽  
Author(s):  
David C. Metz ◽  
Tapas K. Pradhan ◽  
John E. Mrozinski ◽  
Robert T. Jensen ◽  
R.James Turner ◽  
...  

Author(s):  
Stephen J. Pandol ◽  
Mari S. Shoeffield-Payne ◽  
Yalin Hsu ◽  
Peter E. Krims ◽  
Shmuel Muallem

1986 ◽  
Vol 250 (5) ◽  
pp. G698-G708 ◽  
Author(s):  
T. Kimura ◽  
K. Imamura ◽  
L. Eckhardt ◽  
I. Schulz

Enzyme secretion from the exocrine pancreas is stimulated by receptor-activated breakdown of phosphatidylinositol 4,5-bisphosphate and consequent rise of both inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, which leads to Ca2+ release and to activation of protein kinase C, respectively. Another way involves receptor-mediated stimulation of adenylate cyclase and consequent rise of cAMP and activation of protein kinase A. In the present work we have studied direct stimulation, inhibition, and mutual interaction of these pathways on enzyme secretion from isolated rat pancreatic acini that had been permeabilized by treatment with saponin or digitonin. The data were compared with those obtained in isolated intact acini. The data show that with increasing free Ca2+ concentrations greater than 10(-6) M protein release increases in "leaky" but not in "intact" cells and is maximal at approximately 10(-3) M, increasing about twofold compared with that in the absence of Ca2+. In the presence of the acetylcholine analogue carbachol, this effect of Ca2+ is enhanced by about threefold in leaky cells and is also present in intact cells to a similar extent. cAMP and its analogues, dibutyryl cAMP (dbcAMP) and 8-bromo-cAMP stimulate protein release by about twofold in the presence of Ca2+ in leaky cells. In intact acini cAMP has no effect, and cAMP analogues stimulate enzyme secretion by about twofold in some but not all experiments. Similarly, forskolin, an activator of adenylate cyclases and inhibitors of cyclic nucleotide-dependent phosphodiesterases, such as 3-isobutyl-1-methylxanthine (IBMX) and R0 201724, stimulate protein release in permeabilized acini. The Ca2+-binding protein calmodulin has no effect on enzyme secretion, whereas the calmodulin antagonist trifluoperazine dihydrochloride stimulates protein release in leaky but not in intact acini. The activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulates protein release in a Ca2+-dependent manner and enhances cAMP-induced secretion. The effects of carbachol, TPA, cAMP, and a combination of both TPA and cAMP are inhibited by the polyamine spermine in permeabilized cells. Spermine has no effect on carbachol-induced enzyme secretion in intact cells. The data suggest that enzyme secretion from pancreatic acinar cells is mediated by cAMP protein kinase A and by Ca2+ phospholipid protein kinase C in a Ca2+-dependent way and that interaction occurs between both pathways.


1983 ◽  
Vol 245 (5) ◽  
pp. G676-G680
Author(s):  
J. D. Gardner ◽  
V. E. Sutliff ◽  
M. D. Walker ◽  
R. T. Jensen

In dispersed acini from guinea pig pancreas two inhibitors of cyclic nucleotide phosphodiesterase, Ro 20-1724 and 3-isobutyl-1-methylxanthine (IBMX), augmented the increase in amylase secretion caused by supramaximal concentrations of cholecystokinin but did not alter the stimulation of enzyme secretion caused by bombesin. The augmentations of the action of cholecystokinin caused by Ro 20-1724 or IBMX could be reproduced by 8-bromo-cAMP. When tested alone or with theophylline, cholecystokinin did not alter cAMP in pancreatic acini; however, with Ro 20-1724 or IBMX, concentrations of cholecystokinin that were supramaximal for stimulating amylase secretion caused a significant increase in cellular cAMP. These findings indicate that Ro 20-1724 and IBMX augment the action of cholecystokinin on enzyme secretion by inhibiting cyclic nucleotide phosphodiesterase and allowing a significant cholecystokinin-induced increase in cellular cAMP. IBMX but not Ro 20-1724 caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion caused by carbachol. IBMX also caused a parallel rightward shift in the dose-response curve for the stimulation of outflux of 45Ca caused by carbachol. These results indicate that IBMX, but not Ro 20-1724, can function as a muscarinic cholinergic antagonist.


Sign in / Sign up

Export Citation Format

Share Document