Cellular Calcium and Phospholipid Metabolism Mediate Pancreatic Enzyme Secretion

Author(s):  
Stephen J. Pandol ◽  
Mari S. Shoeffield-Payne ◽  
Yalin Hsu ◽  
Peter E. Krims ◽  
Shmuel Muallem
1982 ◽  
Vol 242 (4) ◽  
pp. G423-G428 ◽  
Author(s):  
M. J. Collen ◽  
V. E. Sutliff ◽  
G. Z. Pan ◽  
J. D. Gardner

In dispersed acini from rat pancreas, secretagogues that act through or mimic the action of AMP [vasoactive intestinal peptide (VIP), secretin, or 8-bromo-AMP] caused a twofold increase in amylase secretion. Secretagogues that mobilize cellular calcium (carbamylcholine, C-terminal octapeptide of cholecystokinin, bombesin, or A23187) caused a sevenfold augmentation of the actions of VIP, secretin, or 8-bromo-cAMP on enzyme secretion. Carbamylcholine and the C-terminal octapeptide of cholecystokinin also augmented the action of VIP on amylase secretion from mouse pancreatic acini. Secretagogues that mobilize cellular calcium did not alter binding of 125I-VIP, cellular cAMP, or the increase in cellular cAMP caused by VIP or secretin. Similarly, secretagogues that increase cellular cAMP did not alter 45Ca outflux or the increase in 45Ca outflux caused by carbamylcholine, C-terminal octapeptide of cholecystokinin, bombesin, or A23187. These results indicate that in dispersed acini from rat pancreas there is postreceptor modulation of the actions of VIP and secretin on enzyme secretion by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the magnitude of the effect of VIP and secretin on enzyme secretion. This modulation, in turn, reflects the ability of cellular calcium, mobilized from intracellular stores, to amplify the action of cellular cAMP on the enzyme secretory process.


2020 ◽  
Vol 1 (30) ◽  
pp. 30-36
Author(s):  
E. A. Krylova ◽  
D. V. Aleinik

The article presents the results of a study of the effectiveness of the use of an inhibitor of pancreatic enzyme secretion of octreotide (Octrade) for the prevention of pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP). It was shown that the administration of Octrade at a dose of 0.3 mg in 500 ml of 0.9 % NaCl by continuous intravenous infusion for 7 hours and then 0.1 mg of Octrade subcutaneously at 6 and 12 hours after the end of intravenous infusion significantly reduced the frequency of pancreatitis (4.0 % and 22.2 %; p < 0.05) and hyperamylasemia (8.0 % and 25.9 %; p < 0.05) after ERCP. It is concluded that Octrade is effective in preventing the development of pancreatitis and hyperamilasemia after ERCP.


1987 ◽  
Vol 253 (5) ◽  
pp. G706-G710 ◽  
Author(s):  
G. Jung ◽  
D. S. Louie ◽  
C. Owyang

In rat pancreatic slices, rat pancreatic polypeptide (PP) or C-terminal hexapeptide of PP [PP-(31-36)] inhibited potassium-stimulated amylase release in a dose-dependent manner. The inhibition was unaffected by addition of hexamethonium but blocked by atropine. In contrast, PP(31-36) did not have any effect on acetylcholine- or cholecystokinin octapeptide-stimulated amylase release. In addition, when pancreatic slices were incubated with [3H] choline, PP(31-36) inhibited the potassium-evoked release of synthesized [3H] acetylcholine in a dose-dependent manner. The inhibitory action of PP was unaffected by adrenergic, dopaminergic, or opioid receptor antagonists. Thus PP inhibits pancreatic enzyme secretion via presynaptic modulation of acetylcholine release. This newly identified pathway provides a novel mechanism for hormonal inhibition of pancreatic enzyme secretion via modulation of the classic neurotransmitter function.


Sign in / Sign up

Export Citation Format

Share Document