scholarly journals Reconstitution of D-glucose transport activity from cytoplasmic membranes. Evidence against recruitment of cytoplasmic membrane transporters into the plasma membrane as the sole action of insulin.

1980 ◽  
Vol 255 (21) ◽  
pp. 10382-10386
Author(s):  
C. Carter-Su ◽  
M.P. Czech
1989 ◽  
Vol 257 (4) ◽  
pp. E520-E530
Author(s):  
M. F. Hirshman ◽  
L. J. Wardzala ◽  
L. J. Goodyear ◽  
S. P. Fuller ◽  
E. D. Horton ◽  
...  

We studied the mechanism for the increase in glucose transport activity that occurs in adipose cells of exercise-trained rats. Glucose transport activity, glucose metabolism, and the subcellular distribution of glucose transporters were measured in adipose cells from rats raised in wheel cages for 6 wk (mean total exercise 350 km/rat), age-matched sedentary controls, and young sedentary controls matched for adipose cell size. Basal rates of glucose transport and metabolism were greater in cells from exercise-trained rats compared with young controls, and insulin-stimulated rates were greater in the exercise-trained rats compared with both age-matched and young controls. The numbers of plasma membrane glucose transporters were not different among groups in the basal state; however, with insulin stimulation, cells from exercise-trained animals had significantly more plasma membrane transporters than young controls or age-matched controls. Exercise-trained rats also had more low-density microsomal transporters than control rats in the basal state. When the total number of glucose transporters/cell was calculated, the exercise-trained rats had 42% more transporters than did either control group. These studies demonstrate that the increased glucose transport and metabolism observed in insulin-stimulated adipose cells from exercise-trained rats is due, primarily, to an increase in the number of plasma membrane glucose transporters translocated from an enlarged intracellular pool.


1991 ◽  
Vol 70 (4) ◽  
pp. 1593-1600 ◽  
Author(s):  
G. D. Cartee ◽  
A. G. Douen ◽  
T. Ramlal ◽  
A. Klip ◽  
J. O. Holloszy

Hypoxia caused a progressive cytochalasin B-inhibitable increase in the rate of 3-O-methylglucose transport in rat epitrochlearis muscles to a level approximately six-fold above basal. Muscle ATP concentration was well maintained during hypoxia, and increased glucose transport activity was still present after 15 min of reoxygenation despite repletion of phosphocreatine. However, the increase in glucose transport activity completely reversed during a 180-min-long recovery in oxygenated medium. In perfused rat hindlimb muscles, hypoxia caused an increase in glucose transporters in the plasma membrane, suggesting that glucose transporter translocation plays a role in the stimulation of glucose transport by hypoxia. The maximal effects of hypoxia and insulin on glucose transport activity were additive, whereas the effects of exercise and hypoxia were not, providing evidence suggesting that hypoxia and exercise stimulate glucose transport by the same mechanism. Caffeine, at a concentration too low to cause muscle contraction or an increase in glucose transport by itself, markedly potentiated the effect of a submaximal hypoxic stimulus on sugar transport. Dantrolene significantly inhibited the hypoxia-induced increase in 3-O-methylglucose transport. These effects of caffeine and dantrolene suggest that Ca2+ plays a role in the stimulation of glucose transport by hypoxia.


1996 ◽  
Vol 313 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Joseph T. BROZINICK ◽  
Benedict B. YASPELKIS ◽  
Cindy M. WILSON ◽  
Kristen E. GRANT ◽  
E. Michael GIBBS ◽  
...  

The aim of the present investigation was to determine whether the subcellular distribution and insulin-stimulated translocation of the GLUT4 isoform of the glucose transporter are affected when GLUT4 is overexpressed in mouse skeletal muscle, and if the overexpression of GLUT4 alters maximal insulin-stimulated glucose transport and metabolism. Rates of glucose transport and metabolism were assessed by hind-limb perfusion in GLUT4 transgenic (TG) mice and non-transgenic (NTG) controls. Glucose-transport activity was determined under basal (no insulin), submaximal (0.2 m-unit/ml) and maximal (10 m-units/ ml) insulin conditions using a perfusate containing 8 mM 3-O-methyl-D-glucose. Glucose metabolism was quantified by perfusing the hind limbs for 25 min with a perfusate containing 8 mM glucose and 10 m-units/ml insulin. Under basal conditions, there was no difference in muscle glucose transport between TG (1.10±0.10 μmol/h per g; mean±S.E.M.) and NTG (0.93±0.16 μmol/h per g) mice. However, TG mice displayed significantly greater glucose-transport activity during submaximal (4.42±0.49 compared with 2.69±0.33 μmol/h per g) and maximal (11.68±1.13 compared with 7.53±0.80 μmol/h per g) insulin stimulation. Nevertheless, overexpression of the GLUT4 protein did not alter maximal rates of glucose metabolism. Membrane purification revealed that, under basal conditions, plasma-membrane (~ 12-fold) and intracellular-membrane (~ 4-fold) GLUT4 protein concentrations were greater in TG than NTG mice. Submaximal insulin stimulation did not increase plasma-membrane GLUT4 protein concentration whereas maximal insulin stimulation increased this protein in both NTG (4.1-fold) and TG (2.6-fold) mice. These results suggest that the increase in insulin-stimulated glucose transport following overexpression of the GLUT4 protein is limited by factors other than the plasma-membrane GLUT4 protein concentration. Furthermore, GLUT4 overexpression is not coupled to glucose-metabolic capacity.


1991 ◽  
Vol 278 (1) ◽  
pp. 235-241 ◽  
Author(s):  
A E Clark ◽  
G D Holman ◽  
I J Kozka

We have used an impermeant bis-mannose compound (2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-mannos+ ++- 4-yloxy)-2- propylamine; ATB-BMPA) to photolabel the glucose transporter isoforms GLUT4 and GLUT1 that are present in rat adipose cells. Plasma-membrane fractions and light-microsome membrane fractions were both labelled by ATB-BMPA. The labelling of GLUT4 in the plasma membrane fraction from insulin-treated cells was approximately 3-fold higher than that of basal cells and corresponded with a decrease in the labelling of the light-microsome fraction. In contrast with this, the cell-surface labelling of GLUT4 from insulin-treated intact adipose cells was increased approximately 15-fold above basal levels. In these adipose cell preparations, insulin stimulated glucose transport activity approximately 30-fold. Thus the cell-surface labelling, but not the labelling of membrane fractions, closely corresponded with the stimulation of transport. The remaining discrepancy may be due to an approx. 2-fold activation of GLUT4 intrinsic transport activity. We have studied the kinetics of trafficking of transporters and found the following. (1) Lowering the temperature to 18 degrees C increased basal glucose transport and levels of cell-surface glucose transporters by approximately 3-fold. This net increase in transporters probably occurs because the process of recruitment of transporters is less temperature-sensitive than the process involved in internalization of cell-surface transporters. (2) The time course for insulin stimulation of glucose transport activity occurred with a slight lag period of 47 s and a t 1/2 3.2 min. The time course of GLUT4 and GLUT1 appearance at the cell surface showed no lag and a t 1/2 of approximately 2.3 min for both isoforms. Thus at early times after insulin stimulation there was a discrepancy between transporter abundance and transport activity. The lag period in the stimulation of transport activity may represent the time required for the approximately 2-fold stimulation of transporter intrinsic activity. (3) The decrease in transport activity after insulin removal occurred with a very high activation energy of 159 kJ.mol-1. There was thus no significant decrease in transport or less of cell-surface transporters over 60 min at 18 degrees C. The decrease in transport activity occurred with a t1/2 of 9-11 min at 37 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 343 (3) ◽  
pp. 571-577 ◽  
Author(s):  
Cynthia M. FERRARA ◽  
Samuel W. CUSHMAN

Agents that activate the G-protein Gi (e.g. adenosine) increase, and agents that activate Gs [e.g. isoprenaline (isoproterenol)] decrease, steady-state insulin-stimulated glucose transport activity and cell-surface GLUT4 in isolated rat adipose cells without changing plasma membrane GLUT4 content. Here we have further examined the effects of RsGs and RiGi ligands (in which Rs and Ri are Gs- and Gi-coupled receptors respectively) on insulin-stimulated cell-surface GLUT4 and the kinetics of GLUT4 trafficking in these same cells. Rat adipose cells were preincubated for 2 min with or without isoprenaline (200 nM) and adenosine deaminase (1 unit/ml), to stimulate Gs and decrease the stimulation of Gi respectively, followed by 0-20 min with insulin (670 nM). Treatment with isoprenaline and adenosine deaminase decreased insulin-stimulated glucose transport activity by 58%. Treatment with isoprenaline and adenosine deaminase also resulted in similar decreases in insulin-stimulated cell-surface GLUT4 as assessed by both bis-mannose photolabelling of the substrate-binding site and biotinylation of the extracellular carbohydrate moiety when evaluated under similar experimental conditions. After stimulation with insulin in the absence of Gs and the presence of Gi agents, a distinct sequence of plasma membrane events took place, starting with an increase in immunodetectable GLUT4, then an increase in the accessibility of GLUT4 to bis-mannose photolabel, and finally an increase in glucose transport activity. Pretreatment with isoprenaline and adenosine deaminase before stimulation with insulin did not affect the time course of the increase in immunodetectable GLUT4 in the plasma membrane, but did delay both the increase in accessibility of GLUT4 to photolabel and the increase in glucose transport activity. These results suggest that RsGs and RiGi modulate insulin-stimulated glucose transport by influencing the extent to which GLUT4 is associated with occluded vesicles attached to the plasma membrane during exocytosis, perhaps by regulating the fusion process through which the GLUT4 in docked vesicles becomes exposed on the cell surface.


Sign in / Sign up

Export Citation Format

Share Document