scholarly journals In vivo phosphorylation of the 170-kDa form of eukaryotic DNA topoisomerase II

1989 ◽  
Vol 264 (26) ◽  
pp. 15161-15164 ◽  
Author(s):  
M M Heck ◽  
W N Hittelman ◽  
W C Earnshaw
Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


1994 ◽  
Vol 14 (5) ◽  
pp. 3197-3207
Author(s):  
P R Caron ◽  
P Watt ◽  
J C Wang

A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.


Author(s):  
Hee Jei Yoon ◽  
In Young Choi ◽  
Mi Ran Kang ◽  
Soung Soo Kim ◽  
Mark T Muller ◽  
...  

2001 ◽  
Vol 277 (8) ◽  
pp. 5944-5951 ◽  
Author(s):  
Tao Hu ◽  
Harvey Sage ◽  
Tao-shih Hsieh

2000 ◽  
Vol 11 (4) ◽  
pp. 1293-1304 ◽  
Author(s):  
Brigitte D. Lavoie ◽  
K. Michelle Tuffo ◽  
Scott Oh ◽  
Doug Koshland ◽  
Connie Holm

In vitro studies suggest that the Barren protein may function as an activator of DNA topoisomerase II and/or as a component of theXenopus condensin complex. To better understand the role of Barren in vivo, we generated conditional alleles of the structural gene for Barren (BRN1) in Saccharomyces cerevisiae. We show that Barren is an essential protein required for chromosome condensation in vivo and that it is likely to function as an intrinsic component of the yeast condensation machinery. Consistent with this view, we show that Barren performs an essential function during a period of the cell cycle when chromosome condensation is established and maintained. In contrast, Barren does not serve as an essential activator of DNA topoisomerase II in vivo. Finally,brn1 mutants display additional phenotypes such as stretched chromosomes, aberrant anaphase spindles, and the accumulation of cells with >2C DNA content, suggesting that Barren function influences multiple aspects of chromosome transmission and dynamics.


Sign in / Sign up

Export Citation Format

Share Document