scholarly journals Metal ion specificity of the conversion of bovine factors IX, IX alpha, and IXa alpha to bovine factor IXa beta.

1980 ◽  
Vol 255 (4) ◽  
pp. 1430-1435
Author(s):  
R. Byrne ◽  
G.W. Amphlett ◽  
F.J. Castellino
ChemBioChem ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 517-522 ◽  
Author(s):  
Tatsuya Funai ◽  
Megumi Aotani ◽  
Risa Kiriu ◽  
Junko Nakamura ◽  
Yuki Miyazaki ◽  
...  

2010 ◽  
Vol 429 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Jee-Loon Foo ◽  
Colin J. Jackson ◽  
Paul D. Carr ◽  
Hye-Kyung Kim ◽  
Gerhard Schenk ◽  
...  

The metal ion co-ordination sites of many metalloproteins have been characterized by a variety of spectroscopic techniques and small-molecule model systems, revealing many important insights into the structural determinants of metal ion co-ordination. However, our understanding of this fundamentally and practically important phenomenon remains frustratingly simplistic; in many proteins it is essentially impossible to predict metal ion specificity and the effects of remote ‘outer-shell’ residues on metal ion co-ordination strength are also poorly defined. This is exemplified by our inability to explain why metalloenzymes with identical metal ion co-ordination spheres, such as the closely related orthologues of bacterial PTE (phosphotriesterase) from Agrobacterium radiobacter and Pseudomonas diminuta, display different metal ion specificity and co-ordination strength. In the present study, we present a series of PTE variants that all possess identical metal ion co-ordination spheres, yet display large differences in their metal ion co-ordination strength. Using measurement of the rates of metal ion dissociation from the active site alongside analysis of structural data obtained through X-ray crystallography, we show that ‘outer-shell’ residues provide essential support for the metal ion ligands, in effect buttressing them in their optimal orientation. Remote mutations appear to modulate metal ion interactions by increasing or decreasing the stabilizing effects of these networks. The present study therefore provides a description of how the greater protein fold can be modified to ‘tune’ the strength of metal ion co-ordination and metal ion specificity, as well as reinforcing the concept of proteins as ensembles of conformational states with unique structures and biochemical properties.


1978 ◽  
Vol 17 (7) ◽  
pp. 2037-2039 ◽  
Author(s):  
Paul R. Butler ◽  
Elliott L. Blinn

1978 ◽  
Vol 40 (02) ◽  
pp. 358-367 ◽  
Author(s):  
Robert H Yue ◽  
Menard M Gertler

SummaryThe binding of divalent metal ions to bovine factor X, factor Xa and the coagulant protein in Russell’s viper venom was studied by the technique of fluorescence quenching. Titration of factor X with Ca+2, Mg+2 or Ba+2 revealed that these metal ions can bind to factor X. A tightly binding site(s) was observed with Kd of 79 and 98 μM for Ca+2 and Mg+2 respectively. A loosely binding site(s) was evident with Kd of 0.55, 0.50 and 0.35 mM for Ca+2, Mg+2 and Ba+2 respectively. The quenching phenomenon was also observed when Mn+2 was used as titrant but factor X precipitated out when the concentration of Mn+2 was 10 mM. The binding of Ca+2, Mg+2, Ba+2 or Mn+2 to bovine factor Xa or to the purified coagulant fraction of Russell’s viper venom was very weak in each case.In the absence of Ca+2, the coagulation fraction of Russell’s viper venom could not activate bovine factor X. Activation of factor X was achieved when Ca+2 was replaced by either Mg+2, Ba+2 or Mn+2. When the concentration of these ions were 5 mM, the efficiency of factor Xa generation was estimated to be: Ca+2> Mg+2> Ba+2> Mn+2. Higher concentration of Mg+2, Ba+2, or Mn+2 retarded the activation process. However, Ca+2, Mg+2, Ba+2 or Mn+2 has little or no influence on the esterase activity of factor Xa or purified Rusell’s viper venom.The results suggest that complexation of divalent metal ion with factor X is prerequisite in the activation process. The binding of Mg+2, Ba+2 or Mn+2 to these loosely binding sites might have altered the geometrical configuration as well as the electrostatic environment on factor X significantly. Thus, it is more difficult to form the binary complex and a slower generation of factor Xa results. Therefore, divalent metal ion serves as a dual role in the activation of factor X to factor Xa depending upon the ionic concentration.


Sign in / Sign up

Export Citation Format

Share Document