Activation of Bovine Factor X in the Presence of Calcium, Magnesium, Barium or Manganese ion

1978 ◽  
Vol 40 (02) ◽  
pp. 358-367 ◽  
Author(s):  
Robert H Yue ◽  
Menard M Gertler

SummaryThe binding of divalent metal ions to bovine factor X, factor Xa and the coagulant protein in Russell’s viper venom was studied by the technique of fluorescence quenching. Titration of factor X with Ca+2, Mg+2 or Ba+2 revealed that these metal ions can bind to factor X. A tightly binding site(s) was observed with Kd of 79 and 98 μM for Ca+2 and Mg+2 respectively. A loosely binding site(s) was evident with Kd of 0.55, 0.50 and 0.35 mM for Ca+2, Mg+2 and Ba+2 respectively. The quenching phenomenon was also observed when Mn+2 was used as titrant but factor X precipitated out when the concentration of Mn+2 was 10 mM. The binding of Ca+2, Mg+2, Ba+2 or Mn+2 to bovine factor Xa or to the purified coagulant fraction of Russell’s viper venom was very weak in each case.In the absence of Ca+2, the coagulation fraction of Russell’s viper venom could not activate bovine factor X. Activation of factor X was achieved when Ca+2 was replaced by either Mg+2, Ba+2 or Mn+2. When the concentration of these ions were 5 mM, the efficiency of factor Xa generation was estimated to be: Ca+2> Mg+2> Ba+2> Mn+2. Higher concentration of Mg+2, Ba+2, or Mn+2 retarded the activation process. However, Ca+2, Mg+2, Ba+2 or Mn+2 has little or no influence on the esterase activity of factor Xa or purified Rusell’s viper venom.The results suggest that complexation of divalent metal ion with factor X is prerequisite in the activation process. The binding of Mg+2, Ba+2 or Mn+2 to these loosely binding sites might have altered the geometrical configuration as well as the electrostatic environment on factor X significantly. Thus, it is more difficult to form the binary complex and a slower generation of factor Xa results. Therefore, divalent metal ion serves as a dual role in the activation of factor X to factor Xa depending upon the ionic concentration.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jongseo Park ◽  
Hyung-Seop Youn ◽  
Jun Yop An ◽  
Youngjin Lee ◽  
Soo Hyun Eom ◽  
...  

DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.


1976 ◽  
Vol 35 (02) ◽  
pp. 314-323 ◽  
Author(s):  
K.W.E Denson

SummaryThe clotting of C. V. Helleri plasma is not accelerated by the factor X activator or throm-bin-like enzymes from its own venom. Clotting of the plasma is accelerated by the factor X activator from Russell’s viper venom, but not by the thrombin-like enzyme from Agkistrodon Rhodostoma venom (“Arvin”).The prothrombin activator from the Taipan venom clots C. V. Helleri plasma equally well as human plasma, but the thrombin which is produced has a marked specificity for its own fibrinogen, and clots bovine fibrinogen more slowly.C. V. Helleri plasma contains an inhibitor which progressively inactivates bovine factor Xa and thrombin, but the inhibitor is not potentiated by heparin. The slow, protracted clotting of the snake plasma either alone or when mixed with human plasma or bovine fibrinogen suggests that this inhibitor may interfere with the polymerisation of fibrin monomer.


2015 ◽  
Vol 17 (45) ◽  
pp. 30292-30299 ◽  
Author(s):  
Jang Ho Joo ◽  
Jae-Seung Lee

A new strategy for reversibly assembling spherical nucleic acids (SNAs) is demonstrated based on the coordinative binding of divalent metal ions, particularly Cu2+, to nucleobases.


2000 ◽  
Vol 47 (3) ◽  
pp. 675-683 ◽  
Author(s):  
V I Mel'gunov ◽  
E I Akimova ◽  
K S Krasavchenko

Annexins belong to a family of Ca2+- and phospholipid-binding proteins that can mediate the aggregation of granules and vesicles in the presence of Ca2+. We have studied the effects of different divalent metal ions on annexin-mediated aggregation of liposomes using annexins isolated from rabbit liver and large unilamellar vesicles prepared from soybean asolectin II-S. In the course of these studies, we have found that annexin-mediated aggregation of liposomes can be driven by various earth and transition metal ions other than Ca2+. The ability of metal ions to induce annexin-mediated aggregation decreases in the order: Cd2+ > Ba2+, Sr2+ > Ca2+ > Mn2+ > Ni2+ > Co2+. Annexin-mediated aggregation of vesicles is more selective to metal ions than the binding of annexins to membranes. We speculate that not every type of divalent metal ion can induce conformational change sufficient to promote the interaction of annexins either with two opposing membranes or with opposing protein molecules. Relative concentration ratios of metal ions in the intimate environment may be crucial for the functioning of annexins within specialized tissues and after treatment with toxic metal ions.


Author(s):  
Yi-Ying Wu ◽  
Naveen Kumar Reddy Desu ◽  
Shou-Yun Lu ◽  
Bi-Yu Yu ◽  
Ramya Kumar ◽  
...  

Background: The molecular chaperone function of αB-crystallins is heavily involved in maintaining lens transparency and the development of cataracts. Objective: To study whether divalent metal ion binding improves the stability and αB-crystallin chaperone activity. Results: Substitution of His101 with glycine resulted in structural and functional changes. Spectral analysis and chaperone-like activity assays showed that substitution of glycine resulted in a higher percentage of random coils, increased hydrophobicity, and 22±2% higher chaperone-like activity. Whereas in the presence of the Cu2+ ion, H101G exhibited 32±1% less chaperone-like activity compared to the wild type. Conclusion: Cu2+ has been reported to enhance the chaperone-like activity of lens α-crystallin. Our results indicate that H101 is the predominant Cu2binding site, and the mutation resulted in a partial unfolding that impaired the binding of Cu2+ to H101 residue. In conclusion, this study further helps to understand the important binding site for Cu2+ to αB-crystallin.


2015 ◽  
Vol 197 (9) ◽  
pp. 1606-1613 ◽  
Author(s):  
María M. Ibáñez ◽  
Susana K. Checa ◽  
Fernando C. Soncini

ABSTRACTMerR metalloregulators alleviate toxicity caused by an excess of metal ions, such as copper, zinc, mercury, lead, cadmium, silver, or gold, by triggering the expression of specific efflux or detoxification systems upon metal detection. The sensor protein binds the inducer metal ion by using two conserved cysteine residues at the C-terminal metal-binding loop (MBL). Divalent metal ion sensors, such as MerR and ZntR, require a third cysteine residue, located at the beginning of the dimerization (α5) helix, for metal coordination, while monovalent metal ion sensors, such as CueR and GolS, have a serine residue at this position. This serine residue was proposed to provide hydrophobic and steric restrictions to privilege the binding of monovalent metal ions. Here we show that the presence of alanine at this position does not modify the activation pattern of monovalent metal sensors. In contrast, GolS or CueR mutant sensors with a substitution of cysteine for the serine residue respond to monovalent metal ions or Hg(II) with high sensitivities. Furthermore, in a mutant deleted of the Zn(II) exporter ZntA, they also trigger the expression of their target genes in response to either Zn(II), Cd(II), Pb(II), or Co(II).IMPORTANCESpecificity in a stressor's recognition is essential for mounting an appropriate response. MerR metalloregulators trigger the expression of specific resistance systems upon detection of heavy metal ions. Two groups of these metalloregulators can be distinguished, recognizing either +1 or +2 metal ions, depending on the presence of a conserved serine in the former or a cysteine in the latter. Here we demonstrate that the serine residue in monovalent metal ion sensors excludes divalent metal ion detection, as its replacement by cysteine renders a pan-metal ion sensor. Our results indicate that the spectrum of signals detected by these sensors is determined not only by the metal-binding ligand availability but also by the metal-binding cavity flexibility.


RNA ◽  
2000 ◽  
Vol 6 (4) ◽  
pp. 511-519 ◽  
Author(s):  
ERIC L. CHRISTIAN ◽  
NICHOLAS M. KAYE ◽  
MICHAEL E. HARRIS

Sign in / Sign up

Export Citation Format

Share Document