Three-dimensional finite element analysis of the effect of miniscrew implant length on stress distribution in the miniscrew and cortical bone

2006 ◽  
Vol 39 ◽  
pp. S565
Author(s):  
T. Fongsamootr ◽  
N. Seehawong ◽  
B. Buranastidporn
Author(s):  
Suneetha Rao ◽  
Honey Arora ◽  
Shahul Hameed

ABSTRACT Purpose In spite of many advances in the field of prosthetic dentistry, the choice of whether to treat and retain a grossly compromised tooth or to extract and replace with an implant is debatable. Alveolar bone preservation is one of the main criteria to select the treatment option. This is directly affected by the stress generated in the cortical bone under variable loads and is therefore, relevant. Materials and methods Two three-dimensional finite element models were generated in relation to maxillary second premolar using ANSYS software. Model-I was parallel-tapered titanium implant with screw-retained titanium abutment and porcelain fused to metal (PFM) crown. Model-P was fiber post and com- posite resin core with PFM crown. Luting cement was resin cement. Both the models were surrounded by homogeneous and isotropic cortical and cancellous bone, and were subjected to variable loads of 300, 400, and 500 N in axial (0°) and nonaxial (15°, 45°) directions. Results Stress in the cortical bone in megapascal (MPa) in Model-I/Model-P when subjected to variable loads in newtons(N) in axial direction was 300 N - 37.6 MPa/47.3 MPa; 400 N - 50.2 MPa/63.0 MPa; 500 N - 62.7 MPa/63.0 MPa. 15°- 300 N - 68.5 MPa/65.9 MPa; 400 N - 91.3 MPa/87.9 MPa; 500 N - 114.2 MPa/87.9 MPa. 45° - 300 N - 136.3 MPa/88.9 MPa; 400 N - 181.8 MPa/118.5 MPa; 500 N - 227.2 MPa/118.5 MPa. Conclusion Within the limitation of this study, it was concluded that on axial loading, both the treatment modalities showed no significant difference, but on nonaxial loading, the cortical bone in the implant model showed to have considerably higher stress than post core-treated tooth model. Hence, given a choice, this study favors retaining and restoring a compromised tooth with post core and crown rather than extracting and replacing with an implant. How to cite this article Rao S, Arora H, Hameed S. A Three- dimensional Finite Element Analysis of Stress Distribution in the Cortical Bone in Single Tooth Implant and Post Core-treated Tooth subjected to variable Loads. Int J Prosthodont Restor Dent 2017;7(1):8-16.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Cleidiel Aparecido Araujo Lemos ◽  
Fellippo Ramos Verri ◽  
Joel Ferreira Santiago Junior ◽  
Victor Eduardo de Souza Batista ◽  
Daniel Takanori Kemmoku ◽  
...  

The aim of this study was to evaluate stress distribution in the implants/components and bone tissue for splinted and nonsplinted prostheses with different lengths of implants using three-dimensional finite element analysis. Six models from the posterior maxillary area were used in simulations. Each model simulated three Morse taper implants of 4.0 mm diameter with different lengths, which supported metal-ceramic crowns. An axial load of 400 N and an oblique load of 200 N were used as loading conditions. Splinted prostheses exhibited better stress distribution for the implants/components, whereas nonsplinted prostheses exhibited higher stress in the first molar under axial/oblique loading. Implant length did not influence stress distribution in the implants/components. In cortical bone tissue, splinted prostheses decreased the tensile stress in the first molar, whereas nonsplinted prostheses were subjected to higher tensile stress in the first molar; implant length had no influence on stress distribution. Within the limitations of this study, we conclude that splinted prostheses contributed to better stress distribution in the implant/abutment and cortical bone tissue; however, the reduction in the implant length did not influence the stress distribution.


2015 ◽  
Vol 09 (03) ◽  
pp. 311-318 ◽  
Author(s):  
Ebadian Behnaz ◽  
Mosharraf Ramin ◽  
Samaneh Abbasi ◽  
Memar Ardestani Pouya ◽  
Farzin Mahmood

ABSTRACT Objective: The aim of this study was to investigate the influence of implant crown splinting and the use of angulated abutment on stress distribution in implant body and surrounding bone by three-dimensional finite element analysis. Materials and Methods: For this study, three models with two implants at the site of mandibular right second premolar and first molar were designed (1): Both implants, parallel to adjacent teeth, with straight abutments (2): Anterior implant with 15 mesial angulations and posterior implant were placed parallel to adjacent tooth, (3): Both implants with 15 mesial angulations and parallel to each other with 15° angulated abutments. Restorations were modeled in two shapes (splinted and nonsplinted). Loading in tripod manner as each point 50 N and totally 300 N was applied. Stress distribution in relation to splinting or nonsplinting restorations and angulations was done with ABAQUS6.13. Results: Splinting the restorations in all situations, led to lower stresses in all implant bodies, cortical bone and spongy bone except for the spongy bone around angulated first molar. Angulated implant in nonsplinted restoration cause lower stresses in implant body and bone but in splinted models more stresses were seen in implant body in comparison with straight abutment (model 2). Stresses in nonsplinted and splinted restorations in cortical bone of angulated molar region were more than what was observed in straight molar implant (model 3). Conclusion: Implant restorations splinting lead to a better distribution of stresses in implant bodies and bone in comparison with nonsplinted restorations, especially when the load is applied off center to implant body. Angulations of implant can reduce stresses when the application of the load is in the same direction as the implant angulation.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sign in / Sign up

Export Citation Format

Share Document