Capillary zone electrophoresis with fluid-impervious polymer tubing inside a fused-silica capillary

1997 ◽  
Vol 788 (1-2) ◽  
pp. 155-164 ◽  
Author(s):  
Xian Huang ◽  
Csaba Horváth
2010 ◽  
Vol 9 (3) ◽  
pp. 410-413
Author(s):  
Adhitasari Suratman ◽  
Hermann Waetzig

The protein separation was studied in capillary zone electrophoresis for preventing protein adsorption on the capillary wall. ß-lactoglobulin (pI: 4.83-5.4, Mr: 18.4 kDa), cytochrome c (pI: 9.59, Mr: 11.7 kDa) and ß-casein (pI: 4.6, Mr: 24 kDa) were used as protein models. Strong adsorption of the proteins occurred onto the capillary at a pH around their pIs. In order to prevent protein adsorption, PEG (Poly(ethylene glycol)) was investigated as an effective substance to stabilize the proteins native state and coat the bare fused-silica capillary surface. The presence of 32 mg/mL PEG in buffer solution in a pH range of 6.0 to 4.0 was successful to suppress protein adsorption during the separation. It can also be confirmed with the reproducibility of apparent EOF mobility with percentile RSD (Relative Standard Deviation) less than 2% in long-term measurement.   Keywords: PEG, protein adsorption, CZE


1997 ◽  
Vol 80 (6) ◽  
pp. 1308-1314 ◽  
Author(s):  
Wayne E Rae ◽  
Charles A Lucy

Abstract A capillary zone electrophoresis (CZE) method was developed to separate and determine chlorinated phenols in water and soil samples. A mixture of 16 chlorinated phenols was resolved in 25 min by using a 77 cm (70 cm to detector) × 75 μm fused silica capillary with 0.015M tetraborate/0.045M phosphate (pH 7.3) buffer at 22 kV. Calibration linearities for water samples in the low parts-permillion range were good (correlation coefficient > 0.99) for all solutes except p-chlorophenol. Average precision was 17% relative standard deviation. Typical detection limits were in the 200 μg/L range. Recoveries of chlorinated phenols from synthetic soil samples with methanol were quantitative.


1999 ◽  
Vol 89 (6) ◽  
pp. 522-528 ◽  
Author(s):  
Alvin Jin-Cherng Eun ◽  
Sek-Man Wong

Immuno-capillary zone electrophoresis (I-CZE) is a technique that combines the specificity afforded by serological assays with the sensitivity, rapidity, and automation in detection provided by capillary zone electrophoresis. Cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) were detected in their purified forms as well as in the crude saps of infected Nicotiana benthamiana leaves and Oncidium orchid flowers. The two orchid virus-antibody complexes were resolved via the combined actions of electrophoretic migration and electro-osmotic flow along a buffer-filled, uncoated fused-silica capillary. The I-CZE fractions collected from both CymMV- and ORSV-antibody complex peaks, as well as the RNA purified from them, retained their infectivity upon inoculation onto Chenopodium quinoa. I-CZE assays were able to detect as little as 10 fg each of both CymMV and ORSV in their purified forms as well as in the crude saps of infected N. benthamiana and Oncidium orchid. As multiple samples can be analyzed rapidly, I-CZE offers an ideal diagnostic technique for routine mass-indexing programs such as virus-free certification, breeding for virus-resistant cultivars, plant quarantine, and germ plasm screening. This is the first report of the application of I-CZE for the detection of plant viruses.


2001 ◽  
Vol 47 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Birgitte Wuyts ◽  
Joris R Delanghe ◽  
Ishmael Kasvosve ◽  
Annick Wauters ◽  
Hugo Neels ◽  
...  

Abstract Background: Current methods for carbohydrate-deficient transferrin (CDT) often suffer from low precision, complexity, or risk of false positives attributable to genetic variants. In this study, a new capillary zone electrophoresis (CZE) method for CDT was developed. Methods: CZE was performed on a P/ACE 5000 using fused-silica capillaries [50 μm (i.d.) × 47 cm] and the CEOFIX CDT buffer system with addition of 50 μL of anti-C3c and 10 μL of anti-hemoglobin. Native sera were loaded by high-pressure injection for 3 s, separated at 28 kV over 12 min, and monitored at 214 nm. Results: CDT was completely resolved by differences in migration times (di-trisialotransferrin, 9.86 ± 0.05 min; monosialotransferrin, 9.72 ± 0.05 min; asialotransferrin, 9.52 ± 0.04 min), with a CV of 0.15%. The number of theoretical plates was 312 000 ± 21 000 for the mono- and 199 000 ± 6500 for the di-trisialylated transferrin. Genetic CB and CD variants showed prominent peaks with migration times of 10.12 ± 0.06 and 9.89 ± 0.03 min, respectively, and the carbohydrate-deficient glycoprotein syndrome could be detected, excluding false-positive results. CZE results (as a percentage; y) correlated with the Axis %CDT TIATM (x) values by Deming regression analysis: y = 1.92x − 7.29; r = 0.89. CDT values in 130 healthy nonalcoholics were determined. The 2.5th and 97.5th percentiles were 1.84% and 6.79%. Conclusions: CZE without sample pretreatment can determine CDT with good precision, allows detection of variants, and correlates with ion-exchange chromatography.


Sign in / Sign up

Export Citation Format

Share Document