scholarly journals Blow-up analysis for a quasilinear parabolic system with multi-coupled nonlinearities

2003 ◽  
Vol 281 (2) ◽  
pp. 739-756 ◽  
Author(s):  
Xianfa Song ◽  
Sining Zheng
2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Chunchen Wu

The problem of solutions to a class of quasilinear coupling parabolic system was studied. By constructing weak upper-solutions and weak lower-solutions, we obtain the global existence and blow-up of solutions under appropriate conditions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Juntang Ding ◽  
Chenyu Dong

<p style='text-indent:20px;'>The main purpose of the present paper is to study the blow-up problem of a weakly coupled quasilinear parabolic system as follows:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{array}{ll} u_{t} = \nabla\cdot\left(r(u)\nabla u\right)+f(u,v,x,t), &amp; \\ v_{t} = \nabla\cdot\left(s(v)\nabla v\right)+g(u,v,x,t) &amp;{\rm in} \ \Omega\times(0,t^{*}), \\ \frac{\partial u}{\partial\nu} = h(u), \ \frac{\partial v}{\partial\nu} = k(v) &amp;{\rm on} \ \partial\Omega\times(0,t^{*}), \\ u(x,0) = u_{0}(x), \ v(x,0) = v_{0}(x) &amp;{\rm in} \ \overline{\Omega}. \end{array} \right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Here <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a spatial bounded region in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^{n} \ (n\geq2) $\end{document}</tex-math></inline-formula> and the boundary <inline-formula><tex-math id="M3">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula> of the spatial region <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is smooth. We give a sufficient condition to guarantee that the positive solution <inline-formula><tex-math id="M5">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> of the above problem must be a blow-up solution with a finite blow-up time <inline-formula><tex-math id="M6">\begin{document}$ t^* $\end{document}</tex-math></inline-formula>. In addition, an upper bound on <inline-formula><tex-math id="M7">\begin{document}$ t^* $\end{document}</tex-math></inline-formula> and an upper estimate of the blow-up rate on <inline-formula><tex-math id="M8">\begin{document}$ (u,v) $\end{document}</tex-math></inline-formula> are obtained.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Bo Fang ◽  
Yan Chai

We investigate an initial-boundary value problem for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition. We establish, respectively, the conditions on nonlinearity to guarantee thatu(x,t)exists globally or blows up at some finite timet*. Moreover, an upper bound fort*is derived. Under somewhat more restrictive conditions, a lower bound fort*is also obtained.


2012 ◽  
Vol 17 (4) ◽  
pp. 485-497 ◽  
Author(s):  
Canrong Tian ◽  
Peng Zhu

The quasilinear parabolic system has been applied to a variety of physical and engineering problems. However, most works lack effective techniques to deal with the asymptotic stability. This paper is concerned with the existence and stability of solutions for a plankton allelopathic model described by a quasilinear parabolic system, in which the diffusions are density-dependent. By the coupled upper and lower solutions and its associated monotone iterations, it is shown that under some parameter conditions the positive uniform equilibrium is asymptotically stable. Some biological interpretations for our results are given.


Sign in / Sign up

Export Citation Format

Share Document