scholarly journals Minimal dimension of symmetric or skew-symmetric matrices of given minimal polynomial

2001 ◽  
Vol 158 (2-3) ◽  
pp. 225-245 ◽  
Author(s):  
P. Koulmann
2008 ◽  
Vol 51 (1) ◽  
pp. 57-59 ◽  
Author(s):  
Edward Dobrowolski

AbstractWe find a lower bound on the absolute value of the discriminant of the minimal polynomial of an integral symmetric matrix and apply this result to find a lower bound on Mahler's measure of related polynomials and to disprove a conjecture of D. Estes and R. Guralnick.


2014 ◽  
Vol 79 (3) ◽  
pp. 733-747
Author(s):  
CLAUDIA DEGROOTE ◽  
JEROEN DEMEYER

AbstractLet L be a recursive algebraic extension of ℚ. Assume that, given α ∈ L, we can compute the roots in L of its minimal polynomial over ℚ and we can determine which roots are Aut(L)-conjugate to α. We prove that there exists a pair of polynomials that characterizes the Aut(L)-conjugates of α, and that these polynomials can be effectively computed. Assume furthermore that L can be embedded in ℝ, or in a finite extension of ℚp (with p an odd prime). Then we show that subsets of L[X]k that are recursively enumerable for every recursive presentation of L[X], are diophantine over L[X].


1996 ◽  
Vol 11 (31) ◽  
pp. 2531-2537 ◽  
Author(s):  
TATSUO KOBAYASHI ◽  
ZHI-ZHONG XING
Keyword(s):  

We study the Kielanowski parametrization of the Kobayashi-Maskawa (KM) matrix V. A new two-angle parametrization is investigated explicitly and compared with the Kielanowski ansatz. Both of them are symmetric matrices and lead to |V13/V23|=0.129. Necessary corrections to the off-diagonal symmetry of V are also discussed.


2021 ◽  
Vol 618 ◽  
pp. 76-96
Author(s):  
M.A. Duffner ◽  
A.E. Guterman ◽  
I.A. Spiridonov
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 257-262
Author(s):  
Kenji Toyonaga

Abstract Given a combinatorially symmetric matrix A whose graph is a tree T and its eigenvalues, edges in T can be classified in four categories, based upon the change in geometric multiplicity of a particular eigenvalue, when the edge is removed. We investigate a necessary and sufficient condition for each classification of edges. We have similar results as the case for real symmetric matrices whose graph is a tree. We show that a g-2-Parter edge, a g-Parter edge and a g-downer edge are located separately from each other in a tree, and there is a g-neutral edge between them. Furthermore, we show that the distance between a g-downer edge and a g-2-Parter edge or a g-Parter edge is at least 2 in a tree. Lastly we give a combinatorially symmetric matrix whose graph contains all types of edges.


Author(s):  
A. E. Guterman ◽  
M. A. Duffner ◽  
I. A. Spiridonov
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
pp. 31-35
Author(s):  
Isaac Cinzori ◽  
Charles R. Johnson ◽  
Hannah Lang ◽  
Carlos M. Saiago
Keyword(s):  

Abstract Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars remains valid for combinatorially symmetric matrices over a field. A characterization of generalized stars in the case of combinatorially symmetric matrices is given.


Sign in / Sign up

Export Citation Format

Share Document