Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part I: Calculation of stress intensity factors

2001 ◽  
Vol 49 (7) ◽  
pp. 1399-1420 ◽  
Author(s):  
Véronique Lazarus ◽  
Jean-Baptiste Leblond ◽  
Salah-Eddine Mouchrif
2016 ◽  
Vol 18 ◽  
pp. 52-57
Author(s):  
Lahouari Fodil ◽  
Abdallah El Azzizi ◽  
Mohammed Hadj Meliani

A failure criterion is proposed for ductile fracture in U-notched components under mixed mode static loading. The Compact Tension Shear (CTS) is the preferred test specimen used to determine stress intensity factor in the mode I, mode II and the mixed-mode fracture. In this work, the mode I and mode II stress intensity factors were computed for different notch ratio lengths 0.1<a/W<0.7, of the inner radius of notch 0.25mm<ρ<4mm and load orientation angles 0°<α< 90° using finite element analysis. However, a review of numerical analysis results reveals that the conventional fracture criteria with only stress intensity factors (NSIFs) Kρ first term of Williams’s solution provide different description of stress field around notch zone comparing with results introduce the second and third parameter T-stress and A3.


2016 ◽  
Vol 45 (3) ◽  
pp. 20150411 ◽  
Author(s):  
H. Sarangi ◽  
K. S. R. K. Murthy ◽  
D. Chakraborty

2005 ◽  
Vol 127 (3) ◽  
pp. 269-279 ◽  
Author(s):  
X. Qian ◽  
Robert H. Dodds ◽  
Y. S. Choo

This paper describes the mode mixity of stress-intensity factors for surface cracks at weld toes located at the saddle point in circular hollow section X joints. The remote loading applies a uniform tensile stress at the end of the brace along its axis. The three-dimensional finite element models employ mesh tieing between a topologically continuous, global mesh and a separate, local crack-front mesh. Analyses of a simple plate model that approximates key features of toe cracks at the brace-chord intersection verify the negligible effects of the recommended mesh-tieing scheme on stress intensity factors. The linear-elastic analyses compute the mixed-mode stress intensity factors along the crack front using an interaction-integral approach. The mixed-mode stress intensity factors indicate that the crack front experiences predominantly mode I loading, with KIII→0 near the deepest point on the front (ϕ=π∕2). The total crack driving force, described by the J integral, reaches a maximum value at the deepest point of the crack for the crack aspect ratio a∕c=0.25 considered here. The mode-mixity angle, ψ=tan−1(KII∕KI), at ϕ=π∕2 is compared for a range of practical X-joint configurations and crack-depth ratios. The present study demonstrates that the mode-mixity angle ψ increases with increasing brace-to-chord diameter ratio (β) and decreasing chord radius to wall thickness ratio (γ). Values of the nondimensional stress intensity factors (FI=KI∕σ¯brπa and FII=KII∕σ¯brπa), however, show an opposite trend, with higher crack driving forces for small β and large γ ratios. The variations in the brace-to-chord wall thickness ratio (τ) and the crack depth ratio (a∕t0) do not generate significant effects on the mode mixity.


2010 ◽  
Vol 452-453 ◽  
pp. 837-840
Author(s):  
Akira Shimamoto ◽  
Hiroshi Ohkawara ◽  
Jeong Hwan Nam ◽  
Jai Sug Hawong

In this study, the photoelastic experiment hybrid method was introduced and applied to the fracture problems of the isotropic polycarbonate plate with a central crack under the uniaxial and equibiaxial tensile load. The influences of equibiaxial tensile load on the isochromatic fringes and stress fields, stress intensity factors near the mixed mode crack-tip were investigated. As the results, without relation to the inclined angle of crack, the asymmetric isochromatic fringes around the crack propagation line under uniaxial tensile load has become symmetric and the slope of isochromatic fringe loop has inclined toward crack surface when an equal lateral tensile load was added. Furthermore, the distribution of all stress components have changed from asymmetric shape to symmetric shape, and only the range of compressive stress of σχ/σ0 have changed as compared with the mode I condition under unaxial load with β = 0°. When an equal lateral tensile load was added to uniaxial load, the value of stress intensity factors are little changed when β = 0° but the values of KI /K0 are increased and KII /K0 are become zero, that is, mode I situation when β = 15°~45°.


Sign in / Sign up

Export Citation Format

Share Document