asymmetric shape
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 35)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 92 (2) ◽  
pp. 291
Author(s):  
С.Д. Ханин ◽  
А.И. Ванин ◽  
Ю.А. Кумзеров ◽  
В.Г. Соловьев ◽  
А.В. Цветков ◽  
...  

The possibilities of practical implementation of physical approaches to the design of metal-dielectric photonic crystal systems based on opals, which allow controlling the propagation of electromagnetic waves, are shown. The implemented approaches are based on the effects of excitation of surface plasmon-polaritons capable of propagating along the metal-dielectric interface in plasmonic-photonic layered heterostructures, and modification of the photonic-energy structure of the nanocomposite as a result of dispersion of silver in the opal matrix. Experimental results are presented indicating the occurrence of extraordinary transmission and absorption of light in plasmonic-photonic heterostructures, as well as the asymmetric shape of curves in the reflection spectra of nanocomposites, which is associated with the Fano resonance.


2021 ◽  
Vol 13 (19) ◽  
pp. 3937
Author(s):  
Roksana Zarychta ◽  
Adrian Zarychta ◽  
Katarzyna Bzdęga

The range of natural environmental degradation caused by anthropogenic activity may include geomorphological forms such as dunes resulting from the build-up activity of the wind. In effect, such environmental transformation affects changes connected not only with their relief, but also with the presence and health of diverse plant and animal inhabitants. The subject of the survey was a parabolic dune with asymmetric shape, the sand of which was subjected to exploitation over many years. Terrain data acquired by means of GNSS (Global Navigation Satellite Systems) served to elaborate the present relief of the surveyed dune and to reconstruct its primary relief. These were mainly places where the impacts of human activities were recorded. For this purpose, ordinary kriging (OK) estimation was performed. Simultaneously, satellite data and UAV (Unmanned Aerial Vehicle) imaging were acquired, and subjected to image fusion in order to acquire near infrared bands (NIR), red, green, blue in high spatial resolution. These in turn were applied so as to estimate the condition of the vegetation overplanting the dune and surrounding terrain. The correctness of the modelling was verified by cross-validation (CV), which disclosed low error values. Such values in present and primary relief were, respectively, mean error (ME) at −0.009 and −0.014, root mean square error (RMSE) at 0.564 and 0.304 and root mean square standardised error (RMSSE) at 0.999 and 1.077. Image fusion, with use of pansharpening allowed a colour-infrared composition (CIR) and a Modified Chlorophyll Absorption in Reflectance Index 1 (MCARI1) to be obtained. Their analysis disclosed that vegetation on the dune is characterised by worse health condition as compared with the surrounding area thereof. The proposed approach enabled the environmental condition of the surveyed dune to be analysed, and thereby it allows for a determination of the consequences of further uncontrolled sand recovery without taking into account the historical cartographic materials customarily considered to be the main source of information.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1121
Author(s):  
Dongkyu Lee ◽  
Hiroyuki Kitahata ◽  
Hiroaki Ito

Droplet-based microfluidics is a powerful tool for producing monodispersed micrometer-sized droplets with controlled sizes and shapes; thus, it has been widely applied in diverse fields from fundamental science to industries. Toward a simpler method for fabricating microparticles with front–back asymmetry in their shapes, we studied anisotropic gelation of alginate droplets, which occurs inside a flow-focusing microfluidic device. In the proposed method, sodium alginate (NaAlg) aqueous phase fused with a calcium chloride (CaCl2) emulsion dispersed in the organic phase just before the aqueous phase breaks up into the droplets. The fused droplet with a front–back asymmetric shape was generated, and the asymmetric shape was kept after geometrical confinement by a narrow microchannel was removed. The shape of the fused droplet depended on the size of prefused NaAlg aqueous phase and a CaCl2 emulsion, and the front–back asymmetry appeared in the case of the smaller emulsion size. The analysis of the velocity field inside and around the droplet revealed that the stagnation point at the tip of the aqueous phase also played an important role. The proposed mechanism will be potentially applicable as a novel fabrication technique of microparticles with asymmetric shapes.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009588
Author(s):  
Amy N. Sinclair ◽  
Christine T. Huynh ◽  
Thomas E. Sladewski ◽  
Jenna L. Zuromski ◽  
Amanda E. Ruiz ◽  
...  

Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayane Kumagai ◽  
Yoshinobu Obata ◽  
Yoshiko Yabuki ◽  
Yinlai Jiang ◽  
Hiroshi Yokoi ◽  
...  

AbstractIn morphology field, the functions of an asymmetric-shaped distal phalanx in human finger have only been inferred. In this study, we used an engineering approach to empirically examine the effects of the shape of distal phalanx on the ability of precision grasping. Hence, we developed artificial fingertips consisting of four parts, namely bones, nails, skin, and subcutaneous tissue, that substitute the actual human fingertips. Furthermore, we proposed a method to evaluate the grasping ability of artificial fingers. When a cylindrical object was grasped by an artificial fingertip, a pull-out experiment was conducted. Thus, the asymmetric type was found to be superior in terms of drawing force, holding time, and work of friction than the symmetric type. Our results clearly demonstrate that the asymmetric shape, particularly the mirror-reversed shape of the distal phalanx, improves the ability of precision grasping and suggests that the human distal phalanx is shaped favorably for object grasping.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 561
Author(s):  
Dolores Parras-Burgos ◽  
Daniel G. Fernández-Pacheco ◽  
Francisco J. F. Cañavate

Industrial products have been highlighted in the agronomic field more for their technical and functional aspects than for their visual aesthetics. Currently, this concept has changed and has favoured the development of innovative products taking into account all the factors involved in the conception of a product. This article describes a real industrial product redesign case that was functionally innovative and a reference in the agronomic domain. Due to the large number of copies that emerged from its competitors, this design required a new image in its aesthetic appearance to differentiate it from the rest. The difficulty of this project lay in the technical limitations to develop it, so a conceptual design process based on analogies and inspired by nature was necessary to find the most appropriate shape. Based on this methodology, a symmetrical and static design was transformed into one with asymmetrical and dynamic shapes inspired by the helicoidal movement of water. This new design gave this product an innovative, symbolic, and differentiating image that allowed its industrial registration in a large number of countries.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 325
Author(s):  
ChangHee Son ◽  
BingQiang Ji ◽  
JunKyu Park ◽  
Jie Feng ◽  
Seok Kim

A water droplet dispensed on a superhydrophobic ratchet surface is formed into an asymmetric shape, which creates a Laplace pressure gradient due to the contact angle difference between two sides. This work presents a magnetically actuated superhydrophobic ratchet surface composed of nanostructured black silicon strips on elastomer ridges. Uniformly magnetized NdFeB layers sputtered under the black silicon strips enable an external magnetic field to tilt the black silicon strips and form a superhydrophobic ratchet surface. Due to the dynamically controllable Laplace pressure gradient, a water droplet on the reported ratchet surface experiences different forces on two sides, which are explored in this work. Here, the detailed fabrication procedure and the related magnetomechanical model are provided. In addition, the resultant asymmetric spreading of a water droplet is studied. Finally, droplet impact characteristics are investigated in three different behaviors of deposition, rebound, and penetration depending on the impact speed. The findings in this work are exploitable for further droplet manipulation studies based on a dynamically controllable superhydrophobic ratchet surface.


2021 ◽  
Author(s):  
Evangelos Korkolis ◽  
Florent Gimbert ◽  
Jérôme Weiss ◽  
François Renard

<p>Understanding the evolution of fault strength over multiple interseismic periods is crucial to quantifying seismic hazard. According to Coulomb’s failure criterion, restrengthening, or healing, may result from an increase in friction and/or in cohesion. Classic sliding experiments on rocks and fault gouges are not able to resolve the contribution of cohesion to the healing of frictional interfaces. Here, we present a zero nominal normal stress friction experiment capable of large displacements that exhibits similar complexity as the deforming lithosphere (intermittent, aperiodic deformation; Gutenberg-Richter-type scaling of event sizes). This Couette-type apparatus is designed to shear millimeter-thick layers of columnar ice, grown in-situ in a meter scale circular water tank. When the system is driven at low sliding velocities, the ice plate fractures and sliding occurs along a complex, non-prescribed frictional interface. Water beneath the ice can percolate through the sliding interface and freeze, increasing its strength. A torque gauge and an array of acoustic emission transducers are used to measure the shear strength of the frictional interface and to monitor acoustic activity. Previous work, using constant values of sliding velocity, showed that deformation occurs via a combination of slow and fast slip events, and that the “seismic” part consists of two populations of acoustic emission (AE) events: standalone and correlated, with different Gutenberg-Richter b-values. The asymmetric shape of the shear stress (torque) fluctuations was attributed to cohesion-dominated strength recovery. We are currently using a new, high speed sampling system to investigate the relationship between the stress fluctuations and the concurrent AE activity in constant as well as variable sliding velocity experiments. This work aims to evaluate the effect of time-dependent processes on systems that deform intermittently.</p>


2021 ◽  
Vol 11 (5) ◽  
pp. 2212
Author(s):  
Silvio Cocuzza ◽  
Alberto Doria ◽  
Murat Reis

In this research, an innovative robot is presented that can move both on land and water thanks to a vibration-based locomotion mechanism. The robot consists of a U-shaped beam made of spring steel, two low-density feet that allow it to stand on the water surface without sinking, and a micro-DC motor with eccentric mass, which excites vibrations. The robot exhibits stable terrestrial and aquatic locomotion based on the synchronization between body vibrations and the centrifugal force due to the eccentric mass. On the one hand, in aquatic locomotion, the robot advances thanks to floating oscillations and the asymmetric shape of the floating feet. On the other hand, the terrestrial locomotion, which has already been demonstrated for a similar robot, exploits the modes of vibration of the elastic beam. In this study, the effect of different excitation frequencies on the locomotion speed in water is examined by means of experimental tests and a numerical model. A good agreement between experimental and numerical results is found. The maximum locomotion speed takes place when the floating modes of vibration are excited.


Sign in / Sign up

Export Citation Format

Share Document