Effect of Electrical Stimulation of the Thoracic Spinal Cord on the Function of the Bladder in Multiple Sclerosis

1977 ◽  
Vol 117 (3) ◽  
pp. 285-288 ◽  
Author(s):  
Anthony D. Abbate ◽  
Albert W. Cook ◽  
Marwan Atallah
1994 ◽  
Vol 266 (1) ◽  
pp. R257-R267 ◽  
Author(s):  
E. W. Akeyson ◽  
L. P. Schramm

To better understand the spinal transmission of visceral afferent information, we conducted neurophysiological studies of single spinal neurons that receive input from the greater splanchnic nerve (GSN). Extracellular single-neuron recordings were made in the thoracic spinal cord of chloralose-anesthetized, paralyzed, and artificially ventilated rats, some of which had undergone acute spinal transection at C1. Neurons were divided into four classes according to their responses to GSN stimulation: one-burst excitatory, two-burst excitatory, biphasic, and inhibited. We then studied the characteristics of the convergent somatic input to each class of neurons using either natural somatic stimuli or electrical stimulation of the iliohypogastric nerve (IHN). Most splanchnic input was mediated by unmyelinated fibers, whereas somatic input was mediated by both unmyelinated and small myelinated fibers. Most of the neurons exhibited somatic receptive fields, and the majority responded to both innocuous and noxious somatic stimuli. However, a small number could be excited only by GSN stimulation. Although a careful analysis of response characteristics indicated that there was a tendency for neurons to exhibit similar responses to electrical stimulation of the GSN and the IHN, we observed many combinations of somatic and visceral responses. We suggest that visceral afferent activity, in addition to being processed via convergent somatovisceral pathways, may be processed by neurons that convey only visceral information or by neurons in which visceral and somatic information is differentially coded.


2004 ◽  
Vol 287 (6) ◽  
pp. H2728-H2738 ◽  
Author(s):  
Fang Hua ◽  
Theresa Harrison ◽  
Chao Qin ◽  
Angela Reifsteck ◽  
Brian Ricketts ◽  
...  

The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an “inflammatory exudate solution” (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I–V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.


2015 ◽  
Vol 72 (8) ◽  
pp. 897 ◽  
Author(s):  
Regina Schlaeger ◽  
Nico Papinutto ◽  
Alyssa H. Zhu ◽  
Iryna V. Lobach ◽  
Carolyn J. Bevan ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 3922 ◽  
Author(s):  
Allnoch ◽  
Baumgärtner ◽  
Hansmann

Astrocytes play a key role in demyelinating diseases, like multiple sclerosis (MS), although many of their functions remain unknown. The aim of this study was to investigate the impact of astrocyte depletion upon de- and remyelination, inflammation, axonal damage, and virus distribution in Theiler`s murine encephalomyelitis (TME). Groups of two to six glial fibrillary acidic protein (GFAP)-thymidine-kinase transgenic SJL mice and SJL wildtype mice were infected with TME virus (TMEV) or mock (vehicle only). Astrocyte depletion was induced by the intraperitoneal administration of ganciclovir during the early and late phase of TME. The animals were clinically investigated while using a scoring system and a rotarod performance test. Necropsies were performed at 46 and 77 days post infection. Cervical and thoracic spinal cord segments were investigated using hematoxylin and eosin (H&E), luxol fast blue-cresyl violet (LFB), immunohistochemistry targeting Amigo2, aquaporin 4, CD3, CD34, GFAP, ionized calcium-binding adapter molecule 1 (Iba1), myelin basic protein (MBP), non-phosphorylated neurofilaments (np-NF), periaxin, S100A10, TMEV, and immunoelectron microscopy. The astrocyte depleted mice showed a deterioration of clinical signs, a downregulation and disorganization of aquaporin 4 in perivascular astrocytes accompanied by vascular leakage. Furthermore, astrocyte depleted mice showed reduced inflammation and lower numbers of TMEV positive cells in the spinal cord. The present study indicates that astrocyte depletion in virus triggered CNS diseases contributes to a deterioration of clinical signs that are mediated by a dysfunction of perivascular astrocytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
E. Gialafos ◽  
S. Gerakoulis ◽  
A. Grigoriou ◽  
V. Haina ◽  
C. Kilidireas ◽  
...  

A 47-year-old female patient with multiple sclerosis (MS) developed symptomatic intermittent 2nd degree atrioventricular block (AVB) of five-hour duration, five hours after the first two doses of fingolimod, that resolved completely. Frequency domain analysis of heart rate variability (HRV) revealed increased parasympathetic activity and decreased sympathetic tone, while modified Ewing tests were suggestive of impaired cardiac sympathetic function. We hypothesize that expression of this particular arrhythmia might be related to autonomic nervous system (ANS) dysfunction due to demyelinating lesions in the upper thoracic spinal cord, possibly augmented by the parasympathetic effect of the drug.


2004 ◽  
Vol 286 (5) ◽  
pp. H1654-H1664 ◽  
Author(s):  
Fang Hua ◽  
Brian A. Ricketts ◽  
Angela Reifsteck ◽  
Jeffrey L. Ardell ◽  
Carole A. Williams

Antibody-coated microprobes were inserted into the thoracic (T3–4) spinal cord in urethane-anesthetized Sprague-Dawley rats to detect the differences in the release of immunoreactive substance P-like (irSP) substances in response to differential activation of cardiac nociceptive sensory neurons (CNAN). CNAN were stimulated either by intrapericardial infusion of an inflammatory ischemic exudate solution (IES) containing algogenic substances (i.e., 10 mM each of adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine), or by transient occlusion of the left anterior descending coronary artery (CoAO). There was widespread basal release of irSP from the thoracic spinal cord. Stimulation of the CNAN by IES did not alter the pattern of release of irSP. Conversely, CoAO augmented the release of irSP from T3–4 spinal segments from laminae I–VII. This CoAO-induced irSP release was eliminated after thoracic dorsal rhizotomy. These results indicate that heterogeneous activation of cardiac afferents, as with focal coronary artery occlusion, represents an optimum input for activation of the cardiac neuronal hierarchy and for the resultant perception of angina. Excessive stimulation of cardiac nociceptive afferent neurons elicited during regional coronary artery occlusion involves the release of SP in the thoracic spinal cord and suggests that local spinal cord release of SP may be involved in the neural signaling of angina.


Sign in / Sign up

Export Citation Format

Share Document