DNA repair: models for damage and mismatch recognition

Author(s):  
Scott R Rajski ◽  
Brian A Jackson ◽  
Jacqueline K Barton
2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i560-i568 ◽  
Author(s):  
Amirali Aghazadeh ◽  
Orhan Ocal ◽  
Kannan Ramchandran

Abstract Summary We propose a new spectral framework for reliable training, scalable inference and interpretable explanation of the DNA repair outcome following a Cas9 cutting. Our framework, dubbed CRISPRL and, relies on an unexploited observation about the nature of the repair process: the landscape of the DNA repair is highly sparse in the (Walsh–Hadamard) spectral domain. This observation enables our framework to address key shortcomings that limit the interpretability and scaling of current deep-learning-based DNA repair models. In particular, CRISPRL and reduces the time to compute the full DNA repair landscape from a striking 5230 years to 1 week and the sampling complexity from 1012 to 3 million guide RNAs with only a small loss in accuracy (R2R2 ∼ 0.9). Our proposed framework is based on a divide-and-conquer strategy that uses a fast peeling algorithm to learn the DNA repair models. CRISPRL and captures lower-degree features around the cut site, which enrich for short insertions and deletions as well as higher-degree microhomology patterns that enrich for longer deletions. Availability and implementation The CRISPRL and software is publicly available at https://github.com/UCBASiCS/CRISPRLand.


2005 ◽  
Vol 173 (4S) ◽  
pp. 71-71
Author(s):  
Peter E. Clark ◽  
M. Craig Hall ◽  
Kristin L. Lockett ◽  
Jianfeng Xu ◽  
Sigun L. Zheng ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 317-317
Author(s):  
Xifeng Wu ◽  
Jian Gu ◽  
H. Barton Grossman ◽  
Christopher I. Amos ◽  
Carol Etzel ◽  
...  

2005 ◽  
Vol 36 (7) ◽  
pp. 42
Author(s):  
PATRICE WENDLING
Keyword(s):  

1998 ◽  
Vol 3 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Vilhelm A Bohr ◽  
Grigoiy Dianov ◽  
Adayabalam Balajee ◽  
Alfred May ◽  
David K Orren
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document