scholarly journals Effect of cladding on the stress intensity factors in the reactor pressure vessel

2000 ◽  
Vol 199 (1-2) ◽  
pp. 101-111 ◽  
Author(s):  
S.N. Choi ◽  
K.S. Jang ◽  
J.S. Kim ◽  
J.B. Choi ◽  
Y.J. Kim
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
M. Annor-Nyarko ◽  
Hong Xia

The safety-risk pressurized thermal shock (PTS) have on a reactor pressure vessel (RPV) is one of the most important studies for the lifetime ageing management of a reactor. Several studies have investigated PTS induced by postulated accidents and other anticipated transients. However, there is no study that analyzes the effect of PTS induced by one of the most frequent anticipated operational occurrences—inadvertent operation of the safety injection system. In this paper, a sequential Abaqus-FRANC3D simulation method is proposed to study the integrity status of an ageing pressurized water reactor subjected to PTS induced by inadvertent actuation of the safety injection system. A sequential thermal-mechanical coupling analysis is first performed using a three-dimensional reactor pressure vessel finite element model (3D-FEM). A linear elastic fracture mechanics submodel with a postulated semielliptical surface crack is then created from the 3D-FEM. Subsequently, the submodel is used to evaluate the stress intensity factors based on the M-integral approach coupled within the proposed simulation method. Finally, the stress intensity factors (SIFs) obtained using the proposed method are compared with the conventional extended finite element method approach, and the result shows a good agreement. The maximal thermomechanical stress concentration was observed at the inlet nozzle-inner wall intersection. In addition, The ASME fracture toughness of the reactor vessel’s steel compared with SIFs show that the PTS event and crack configuration analysed may not pose a risk to the integrity of the RPV. This work serves as a critical reference for the ageing management and fatigue life prediction of reactor pressure vessels.


Author(s):  
Kiminobu Hojo ◽  
Naoki Ogawa ◽  
Yoichi Iwamoto ◽  
Kazutoshi Ohoto ◽  
Seiji Asada ◽  
...  

A reactor pressure vessel (RPV) head of PWR has penetration holes for the CRDM nozzles, which are connected with the vessel head by J-shaped welds. It is well-known that there is high residual stress field in vicinity of the J-shaped weld and this has potentiality of PWSCC degradation. For assuring stress integrity of welding part of the penetration nozzle of the RPV, it is necessary to evaluate precise residual stress and stress intensity factor based on the stress field. To calculate stress intensity factor K, the most acceptable procedure is numerical analysis, but the penetration nozzle is very complex structure and such a direct procedure takes a lot of time. This paper describes applicability of simplified K calculation method from handbooks by comparing with K values from finite element analysis, especially mentioning crack modeling. According to the verified K values in this paper, fatigue crack extension analysis and brittle fracture evaluation by operation load were performed for initial crack due to PWSCC and finally structural integrity of the penetration nozzle of RPV head was confirmed.


Sign in / Sign up

Export Citation Format

Share Document