Stress intensity factors of corner cracks at set-in nozzle–cylinder intersection of a PWR reactor pressure vessel

Author(s):  
Usman Tariq Murtaza ◽  
M. Javed Hyder
2000 ◽  
Vol 199 (1-2) ◽  
pp. 101-111 ◽  
Author(s):  
S.N. Choi ◽  
K.S. Jang ◽  
J.S. Kim ◽  
J.B. Choi ◽  
Y.J. Kim

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
M. Annor-Nyarko ◽  
Hong Xia

The safety-risk pressurized thermal shock (PTS) have on a reactor pressure vessel (RPV) is one of the most important studies for the lifetime ageing management of a reactor. Several studies have investigated PTS induced by postulated accidents and other anticipated transients. However, there is no study that analyzes the effect of PTS induced by one of the most frequent anticipated operational occurrences—inadvertent operation of the safety injection system. In this paper, a sequential Abaqus-FRANC3D simulation method is proposed to study the integrity status of an ageing pressurized water reactor subjected to PTS induced by inadvertent actuation of the safety injection system. A sequential thermal-mechanical coupling analysis is first performed using a three-dimensional reactor pressure vessel finite element model (3D-FEM). A linear elastic fracture mechanics submodel with a postulated semielliptical surface crack is then created from the 3D-FEM. Subsequently, the submodel is used to evaluate the stress intensity factors based on the M-integral approach coupled within the proposed simulation method. Finally, the stress intensity factors (SIFs) obtained using the proposed method are compared with the conventional extended finite element method approach, and the result shows a good agreement. The maximal thermomechanical stress concentration was observed at the inlet nozzle-inner wall intersection. In addition, The ASME fracture toughness of the reactor vessel’s steel compared with SIFs show that the PTS event and crack configuration analysed may not pose a risk to the integrity of the RPV. This work serves as a critical reference for the ageing management and fatigue life prediction of reactor pressure vessels.


1980 ◽  
Vol 102 (3) ◽  
pp. 278-286 ◽  
Author(s):  
S. N. Atluri ◽  
K. Kathiresan

The influence of the flaw shape on the variation of stress-intensity factors along the crack front is examined for longitudinal inner surface flaws in pressure vessels, and for corner cracks present at the intersection of a pressure vessel and a nozzle. For the inner surface flaw problem, the geometry of the pressure vessel considered is that of a commercial pressure vessel. The analyzed flaw shapes are those recommended by the ASME Boiler and Pressure Vessel Code (Section III, App. G, 1977). In the case of corner cracks at nozzle-pressure vessel junctions, natural flaw shapes obtained through experiments are considered. A fully three-dimensional linear elastic hybrid displacement finite element procedure was used to analyze these problems of practical interest in pressure vessel analysis and design. The obtained solutions are compared with those in the literature using other numerical and/or experimental procedures, and a discussion of noted discrepancies is presented.


1991 ◽  
Vol 7 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Zhao Wei ◽  
Wu Xueren ◽  
Yan Minggao

Sign in / Sign up

Export Citation Format

Share Document