Modelling particle size distributions and secondary particle formation in emulsion polymerisation

Polymer ◽  
1998 ◽  
Vol 39 (26) ◽  
pp. 7099-7112 ◽  
Author(s):  
Emma M. Coen ◽  
Robert G. Gilbert ◽  
Bradley R. Morrison ◽  
Hartmann Leube ◽  
Sarah Peach
2008 ◽  
Vol 8 (22) ◽  
pp. 6729-6738 ◽  
Author(s):  
N. Kalivitis ◽  
W. Birmili ◽  
M. Stock ◽  
B. Wehner ◽  
A. Massling ◽  
...  

Abstract. Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.


2008 ◽  
Vol 8 (2) ◽  
pp. 6571-6601
Author(s):  
N. Kalivitis ◽  
W. Birmili ◽  
M. Stock ◽  
B. Wehner ◽  
A. Massling ◽  
...  

Abstract. Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm–10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm−3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm−3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm−3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1–1.7 cm−3 s−1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm−3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.


2002 ◽  
Vol 2 (6) ◽  
pp. 2413-2448
Author(s):  
U. Uhrner ◽  
W. Birmili ◽  
F. Stratmann ◽  
M. Wilck ◽  
I. J. Ackermann ◽  
...  

Abstract. At Hohenpeissenberg (47°48'N, 11°07'E, 988 m asl), a rural site 200-300 m higher than the surrounding terrain, sulphuric acid concentrations, particle size distributions, and other trace gas concentrations were measured over a two and a half year period. Measured particle number concentrations and inferred particle surface area-concentrations were compared with box-model simulations based on a multimodal lognormal aerosol module that included a binary sulphuric acid water nucleation scheme. The calculated nucleation rates were corrected with a factor to match measured particle number concentrations. These corrections varied over a range of 10-3 - 1017. The correction factors were close to 1 for the measurements made in the winter, which represented stable thermal stratification and low wind conditions. In contrast, the correction factors were the largest for measurements made under strong convective conditions. Our comparison of measured and simulated particle size distributions suggest a distant particle-formation process under convective conditions near the interface of the mixed layer and the entrainment zone, followed by downward transport and particle growth. For stable stratification and low winds, our comparisons suggest that particles formed close to the measurement site.


2003 ◽  
Vol 3 (2) ◽  
pp. 347-359 ◽  
Author(s):  
U. Uhrner ◽  
W. Birmili ◽  
F. Stratmann ◽  
M. Wilck ◽  
I. J. Ackermann ◽  
...  

Abstract. At Hohenpeissenberg (47° 48' N, 11° 07' E, 988 m asl), a rural site 200--300~m higher than the surrounding terrain, sulphuric acid concentrations, particle size distributions, and other trace gas concentrations were measured over a two and a half year period. Measured particle number concentrations and inferred particle surface area concentrations were compared with box-model simulations for 12 carefully selected data sets collected during the HAFEX experiment (Birmili et al., 2003). The 12 cases were selected after meteorological and aerosol dynamical criteria in order to justify the use of a box-model. The aerosol model included a binary sulphuric acid water nucleation scheme. Calculated nucleation rates were corrected with a factor to match measured and calculated particle number concentrations. For the investigated 12 data sets, the correction factors were smallest for measurements made under stable thermal stratification and low wind conditions, i.e. conditions that are frequently encountered during winter. Correction factors were largest for measurements made under strong convective conditions. Our comparison of measured and simulated particle size distributions suggests that the particle formation process maybe strongly influenced by mixing processes driven by thermal convection and/or wind sheer.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

Sign in / Sign up

Export Citation Format

Share Document