Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata

2003 ◽  
Vol 35 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Jens Mackensen ◽  
Jürgen Bauhus
1994 ◽  
Vol 24 (9) ◽  
pp. 1811-1817 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Carbon dioxide evolution rates for downed logs (coarse woody debris) and the forest floor were measured in a temperate, old-growth rain forest in Olympic National Park, Washington, using the soda lime trap method. Measurements were taken every 4 weeks from October 22, 1991, to November 19, 1992. Respiration rates for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.), logs were determined for decay classes 1–2, 3, and 5 in two diameter classes. Overall, western hemlock logs respired at a rate 35% higher (4.37 g CO2•m−2•day−1) than Douglas-fir logs (3.23 g CO2•m−2•day−1). Respiration rates for decay class 1–2 logs of both species were similar to decay class 5 logs (4.46 and 4.07 g CO2•m−2•day−1, respectively), but decay class 3 logs respired at a lower rate (3.23 g CO2•m−2•day−1). Seasonal patterns of respiration rates occurred, particularly for decay class 1 and 2 western hemlock logs where monthly averages ranged from a low of 2.67 g CO2•m−2•day−1 in February 1992 to a high of 8.30 g CO2•m−2•day−1 in September 1992. Rates for decay class 1–2 western hemlock logs were greater than those from the forest floor, which ranged from 3.42 to 7.13 g CO2•m−2•day−1. Respiration rates were depressed in late July and August compared with fall and spring owing to the summer drought characteristic of the Pacific Northwest. Large-diameter western hemlock logs in decay class 1–2 had higher respiration rates than small-diameter logs, whereas large-diameter decay class 3 western hemlock logs had lower respiration rates than small-diameter logs.


2004 ◽  
Vol 187 (2-3) ◽  
pp. 197-211 ◽  
Author(s):  
Girisha K Ganjegunte ◽  
Leo M Condron ◽  
Peter W Clinton ◽  
Murray R Davis ◽  
Nathalie Mahieu

2008 ◽  
Vol 255 (11) ◽  
pp. 3839-3845 ◽  
Author(s):  
L.G. Garrett ◽  
G.R. Oliver ◽  
S.H. Pearce ◽  
M.R. Davis

1996 ◽  
Vol 26 (8) ◽  
pp. 1337-1345 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Coarse woody debris (CWD) and soil respiration rates were measured using soda lime traps on a clearcut site in the Hoh River Valley on the west side of the Olympic Peninsula, Washington. The influence of species of CWD (western hemlock (Tsugaheterophylla (Raf.) Sarg.) and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco)), decay class, and log diameter on respiration rates was determined. CWD and soil respiration were measured every 4 weeks from October 1991 to November 1992 along with CWD and soil temperature and moisture contents. Western hemlock logs respired at a significantly higher rate (4.05 g CO2•m−2•day−1) than Douglas-fir logs (2.94 g CO2•m−2•day−1). There were no significant differences between respiration rates for decay classes 1–2, 3, and 5 logs (4.47, 3.69, and 4.28 g CO2•m−2•day−1, respectively), and there was no strong relationship between CWD respiration rate and log diameter. The highest average respiration rate was from the soil in the clearcut (5.22 g CO2•m−2•day−1). Averaged for the year, log and soil respiration rates in the clearcut site were similar to those in an adjacent old-growth forested site. However, seasonal fluctuations were greater on the clearcut site. Higher summer respiration rates and lower winter rates observed on the clearcut relative to the old-growth site appeared to be driven more by temperature than by moisture. Clear-cutting also resulted in higher summer CWD and soil temperatures and lower winter temperatures compared with the old-growth site.


Biotropica ◽  
2021 ◽  
Author(s):  
Ekaterina Shorohova ◽  
Ekaterina Kapitsa ◽  
Andrey Kuznetsov ◽  
Svetlana Kuznetsova ◽  
Valentin Lopes de Gerenuy ◽  
...  

2021 ◽  
pp. e01637
Author(s):  
Francesco Parisi ◽  
Michele Innangi ◽  
Roberto Tognetti ◽  
Fabio Lombardi ◽  
Gherardo Chirici ◽  
...  

Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 541-554
Author(s):  
Adam Gorgolewski ◽  
Philip Rudz ◽  
Trevor Jones ◽  
Nathan Basiliko ◽  
John Caspersen

Sign in / Sign up

Export Citation Format

Share Document