Solvent effect on ground-state versus transition-state stabilization by metal ions. Contrasting metal ion behaviour in tetraglyme and ethanol for nucleophilic displacement at a phosphorus centre

1990 ◽  
Vol 31 (45) ◽  
pp. 6513-6516 ◽  
Author(s):  
E. Buncel ◽  
E.J. Dunn ◽  
Ng. van Truong ◽  
R.A.B. Bannard ◽  
J.G. Purdon
1989 ◽  
Vol 67 (9) ◽  
pp. 1440-1448 ◽  
Author(s):  
Edward J. Dunn ◽  
Erwin Buncel

The effect of macrocyclic crown ether and cryptand complexing agents on the rate of the nucleophilic displacement reaction of p-nitrophenyl diphenylphosphinate by alkali metal ethoxides in ethanol at 25 °C has been studied by spectrophotometric techniques. For the reactions of potassium ethoxide, sodium ethoxide, and lithium ethoxide, the observed rate constant increased in the order KOEt < NaOEt < LiOEt. Crown ether and cryptand cation-complexing agents have a retarding effect on the rate. Increasing the ratio of complexing agent to base results in a decrease in kobs to a minimum value corresponding to the rate of reaction of free ethoxide ion. In complementary experiments, alkali metal ions were added to these reaction systems in the form of unreactive salts, causing an increase in reaction rate. The kinetic data were analysed in terms of ion-pairing treatments, which allowed evaluation of rate coefficients due to free ethoxide ions and metal ion – ethoxide ion pairs. Possible roles of the metal cations are discussed in terms of ground state and transition state stabilization. Evaluation of the equilibrium constants for association of the metal ion with ground state (Ka) and the transition state (K′a) shows that catalysis occurs as a result of enhanced association between the metal ion and the transition state, with (K′a) values increasing in the order K+ < Na+ < Li+. A model is proposed in which transition state stabilization arises largely from chelation of the solvated metal ion to two charged oxygen centers. This appears to be the first reported instance of catalysis by alkali metal cations in nucleophilic displacement at phosphoryl centers. Keywords: nucleophilic displacement at phosphorus, alkali-metal-ion catalysis.


2003 ◽  
Vol 81 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Erwin Buncel ◽  
Ruby Nagelkerke ◽  
Gregory RJ Thatcher

In continuation of our studies of alkali metal ion catalysis and inhibition at carbon, phosphorus, and sulfur centers, the role of alkali metal ions in nucleophilic displacement reactions of p-nitrophenyl phenylphosphonate (PNPP) has been examined. All alkali metal ions studied acted as catalysts. Alkali metal ions added as inert salts increased the rate while decreased rate resulted on M+ complexation with 18-crown-6 ether. Kinetic analysis indicated the interaction of possibly three potassium ions, four sodium ions, and five lithium ions in the transition state of the reactions of ethoxide with PNPP. Pre-association of the anionic substrate with two metals ions in the ground state gave the best fit to the experimental data of the sodium system. Thus, the study gives evidence of the role of several metal ions in nucleophilic displacement reactions of ethoxide with anionic PNPP, both in the ground state and in the transition state. Molecular modeling of the anionic transition state implies that the size of the monovalent cation and the steric requirement of the pentacoordinate transition state are the primary limitations on the number of cations that can be brought to bear to stabilize the transition state and catalyze nucleophilic substitution at phosphorus. The bearing of the present work on metal ion catalysis in enzyme systems is discussed, in particular enzymes that catalyze phosphoryl transfer, which often employ multiple metal ions. Our results, both kinetic and modeling, reveal the importance of electrostatic stabilization of the transition state for phosphoryl transfer that may be effected by multiple cations, either monovalent metal ions or amino acid residues. The more such cations can be brought into contact with the anionic transition state, the greater the catalysis observed.Key words: alkali metal ion catalysis, nucleophilic displacement at phosphorus, multiple metal ion catalysis, phosphoryl transfer.


1990 ◽  
Vol 68 (10) ◽  
pp. 1846-1858 ◽  
Author(s):  
Marko J. Pregel ◽  
Edward J. Dunn ◽  
Erwin Buncel

The rate of the nucleophilic displacement reaction of p-nitrophenyl benzenesulfonate (1) with alkali metal ethoxides in ethanol at 25 °C has been studied by spectrophotometric techniques. For lithium ethoxide, sodium ethoxide, potassium ethoxide, and cesium ethoxide, the observed rate constants increase in the order LiOEt < NaOEt < CsOEt < KOEt. The effect of added crown ether and cryptand complexing agents was also investigated. Addition of complexing agent to the reaction of KOEt results in the rate decreasing to a minimum value corresponding to the reaction of free ethoxide. Conversely, addition of complexing agent to the reaction of LiOEt results in the rate increasing to a maximum value that is identical to the minimum value seen in the reaction of KOEt in the presence of excess complexing agent. In complementary experiments, alkali metal ions were added in the form of unreactive salts. Addition of a K+ salt to the reaction of KOEt increases the reaction rate, while addition of a Li+ salt to the reaction of LiOEt decreases the rate. The involvement of metal ions in the reaction of 1 is proposed to occur via reactive alkali metal – ethoxide ion pairs. The kinetic data are analyzed in terms of an ion pairing treatment that allows the calculation of second-order rate constants for free ethoxide and metal–ethoxide ion pairs; the rate constants increase in the order LiOEt < EtO−< NaOEt < CsOEt < KOEt. Thus, Li+isaninhibitorofthereactionofethoxidewith1, whiletheothermetalsionsstudiedareallcatalysts. Equilibrium constants for the association of the various metal ions with the transition state are calculated using a thermodynamic cycle, and are compared to association constants in the ground state. Consistent with the observed kinetic results, Li+ is found to stabilize the ground state more than the transition state, while Na+, K+, and Cs+ all stabilize the transition state more than the ground state. The trend in the magnitude of the transition state stabilization is interpreted in terms of interactions of the transition state with bare or solvated metal ions. It is concluded that the transition state for the reaction of 1 with ethoxide forms solvent separated ion pairs with alkali metal ions. Analogous data were available for the reaction of p-nitrophenyl diphenylphosphinate (2) with ethoxides, where Li+, Na+, K+, and Cs+ all function as catalysts, and the results are analyzed as above. In contrast to the sulfonate system, it is proposed that the phosphinate transition state forms contact ion pairs with alkali metal ions. The difference is attributed to a greater localization of negative charge in the phosphinate transition state, leading to stronger interactions with metal ions, which overcome metal ion – solvent interactions. Keywords: nucleophilic substitution at sulfur, alkali metal ion catalysis.


1990 ◽  
Vol 68 (10) ◽  
pp. 1837-1845 ◽  
Author(s):  
Edward J. Dunn ◽  
Robert Y. Moir ◽  
Erwin Buncel ◽  
J. Garfield Purdon ◽  
Robert A. B. Bannard

The reactions of p-nitrophenyl diphenylphosphinate (1) with lithium, sodium, potassium, and benzyltrimethylammonium phenoxides (BTMAOPh) have been studied by spectrophotometric techniques in anhydrous ethanol at 25 °C. The reactivity (kobs) of the alkali metal phenoxides increases in the order BTMAOPh < KOPh < NaOPh < LiOPh. The rate of reaction of 1 with LiOPh is enhanced when lithium salts (LiSCN, LiNO3, LiClO4, LiOAc) are added to the reaction media. The addition of the alkali metal complexing agents dicyclohexyl-18-crown-6 ether or [2.2.2]cryptand for Na+, and [2.1.1]cryptand for Li+, to each of the alkali metal phenoxide reactions resulted in a decrease in rate, indicating catalysis by the alkali metal ions. The kinetic data are analyzed to obtain specific rate coefficients of reactions of phenoxide and ethoxide as the dissociated ions and as alkali metal – phenoxide ion pairs. Reactivities follow the order [Formula: see text]; [Formula: see text]; [Formula: see text]; [Formula: see text]. A mechanism is proposed in which the ion-paired metal phenoxide is more reactive towards the substrate than is the dissociated phenoxide. Analysis of the data in terms of initial state and transition state interactions with metal ions indicates that the increased reactivity of the ion-paired species results from greater stabilization of the negatively charged transition state relative to stabilization of the ion-paired nucleophile. Keywords: nucleophilic displacement at phosphorus by phenoxide, alkali-metal-ion catalysis.


1995 ◽  
Vol 73 (6) ◽  
pp. 772-780 ◽  
Author(s):  
Erwin Buncel ◽  
Fan Yang ◽  
Robert Y. Moir ◽  
Ikenna Onyido

Transition-metal-bound imidazoles are suitable models for evaluating the roles of metal ions in biomolecules having the imidazole moiety and similar heterocyclic residues as part of their structure. Such studies provide useful insights into metal–biomolecule interactions in biological systems, especially when the lability of the metal–ligand bond is substantially reduced, such that the identity of the metal–ligand complex is preserved during the course of the reaction under investigation. The present paper reports on a kinetic study of tritium exchange from the C(2) position of the imidazole moiety in the substitution-inert complex cations [Co(NH3)5[2-3H]-imidazole]3+ (1) and [Co(NH3)5-1-methyl-[2-3H]-imidazole]3+ (2). Rate–pH profiles have been determined in aqueous solution at 60 °C. Both substrates are believed to react through rate-determining attack of hydroxide ion (kM+ pathway) at C(2)-T. Dissection of the kinetic data reveals an additional pathway for 1 consequent upon deprotonation of its pyrrole-like N-H(T) to yield 3, which is then attacked by hydroxide at C(2) (kM pathway). The ratio kM+/kM = 103 that is obtained is in accord with the expected reduced reactivity of 3. Comparison of the present data with those reported for a variety of heterocyclic substrates shows that the order of reactivity, protonated [Formula: see text] metal ion coordinated [Formula: see text] neutral form of substrates, prevails. The superiority of the proton over metal ions in catalyzing isotopic hydrogen exchange is attributed to its larger ground state acidifying effect coupled with the greater transition state stabilization it affords, relative to metal ions. The exchange reaction of 3 via the kM pathway is the first example of a reactive anionic species in which the negative charge is located α to the exchanging C-H. Keywords: tritium exchange, cobalt (III)-coordinated imidazoles.


2001 ◽  
Vol 79 (2) ◽  
pp. 157-173 ◽  
Author(s):  
Vimal K Balakrishnan ◽  
Julian M Dust ◽  
Gary W vanLoon ◽  
Erwin Buncel

The rates of displacement of 3-methyl-4-nitrophenoxide ion from the pesticide, fenitrothion, by alkali metal ethoxides in anhydrous ethanol were followed spectrophotometrically. Through product analysis experiments, which included 31P NMR and GC-MS, as well as spectrophotometric analysis, three reaction pathways were identified: nucleophilic attack at the phosphorus centre, attack at the aliphatic carbon, and a minor SNAr route ([Formula: see text]7%). Furthermore, a consecutive process was found to occur on the product of attack at the phosphorus centre. For purposes of kinetic treatment, the processes at the aliphatic and aromatic carbon were combined (i.e., the minor SNAr pathway was neglected), and the observed reaction rate constants were dissected into rate coefficients for nucleophilic attack at phosphorus and at aliphatic carbon. Attack at phosphorus was found to be catalyzed by the alkali metal ethoxides in the order KOEt > NaOEt > LiOEt. Catalysis arises from alkali metal ethoxide aggregates in the base solutions used (0–1.8 M); treatment of the system as a mixture of free ethoxide, ion-paired metal ethoxide, and metal ethoxide dimers resulted in a good fit with the kinetic data. An unexpected dichotomy in the kinetic behaviour of complexing agents (e.g., DC-18-crown-6, [2.2.2]cryptand) indicated that the dimers are more reactive than free ethoxide anions, which are in turn more reactive than ion-paired metal ethoxide. The observed relative order of reactivity is explained in the context of the Eisenman theory in which the free energy of association of the metal ion with the rate-determining transition state is largely determined by the solvent reorganization parameter. In contrast with displacement at the phosphorus centre, attack at the aliphatic carbon was not found to be catalyzed by alkali metals. In this case, the free ethoxide anion was more reactive than either the ion-paired metal ethoxide or the dimeric aggregate. The differing effects of alkali metals on the two pathways is ascribed largely to the leaving group pKa. For carbon attack, the pKa value estimated for demethyl fenitrothion, 2.15, is sufficiently low that metal ions are not required to stabilize the rate-determining transition state. In contrast, for phosphorus attack, 3-methyl-4-nitrophenoxide, with a pKa of 7.15, requires stabilization by metal ion interactions. Hence, alkali metal ions catalyze attack at phosphorus, but not attack at the carbon centres.Key words: organophosphorothioate, pesticide, fenitrothion, ethanolysis, alkali metal ethoxide, ion-pair reactivity, dimers, catalysis, competitive pathways.


Sign in / Sign up

Export Citation Format

Share Document