An economic version of numerical Laplace inversion

1983 ◽  
Vol 23 (4) ◽  
pp. 139-141
Author(s):  
N.M. Ivanov ◽  
V.P. Muzychenko
2020 ◽  
Vol 9 (11) ◽  
pp. 9769-9780
Author(s):  
S.G. Khavale ◽  
K.R. Gaikwad

This paper is dealing the modified Ohm's law with the temperature gradient of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic and electrically infinite material with a spherical region using fractional order derivative. The general solution obtained from Laplace transform, numerical Laplace inversion and state space approach. The temperature, displacement and stresses are obtained and represented graphically with the help of Mathcad software.


2007 ◽  
Vol 353-358 ◽  
pp. 1149-1152
Author(s):  
Tian Hu He ◽  
Li Cao

Based on the Lord and Shulman generalized thermo-elastic theory, the dynamic thermal and elastic responses of a piezoelectric rod fixed at both ends and subjected to a moving heat source are investigated. The generalized piezoelectric-thermoelastic coupled governing equations are formulated. By means of Laplace transformation and numerical Laplace inversion the governing equations are solved. Numerical calculation for stress, displacement and temperature within the rod is carried out and displayed graphically. The effect of moving heat source speed on temperature, stress and temperature is studied. It is found from the distributions that the temperature, thermally induced displacement and stress of the rod are found to decrease at large source speed.


Sign in / Sign up

Export Citation Format

Share Document