free volume
Recently Published Documents


TOTAL DOCUMENTS

2352
(FIVE YEARS 260)

H-INDEX

93
(FIVE YEARS 6)

2022 ◽  
Vol 36 ◽  
pp. 100788
Author(s):  
Georgy S Golubev ◽  
Vladimir V Volkov ◽  
Ilya L Borisov ◽  
Alexey V Volkov
Keyword(s):  

Author(s):  
Jingyun Liu ◽  
Ziyu Xing ◽  
Haibao Lu ◽  
Yong-Qing Fu

Sequential glass and melting transitions in semi-crystalline shape memory polymers (SMPs) provide great opportunities to design and generate multiple shape-memory effects (SMEs) for practical applications. However, the complexly dynamic confinements of coexisting amorphous and crystalline phases within the semi-crystalline SMPs are yet fully understood. In this study, an interfacial confinement model is formulated to describe dynamic relaxation and shape memory behavior in the semi-crystalline SMPs undergoing sequential phase/state transitions. A confinement entropy model is first established to describe the glass transition behavior of amorphous phase within the SMPs based on the free volume theory, where the free volume is critically confined by the crystalline phase. An extended Avrami model is then formulated using the frozen volume theory to characterize the melting and crystallization transitions of the crystalline phase in the SMPs, whose interfacial confinement with the amorphous phase has been identified as the driving force for the supercooled regime. Furthermore, an extended Maxwell model is formulated to describe the effect of dynamic confinement of two phases on the multiple SMEs and shape recovery behaviors in the semi-crystalline SMPs. Finally, the effectiveness of the newly proposed model is verified using the experimental data reported in the literature. This study aims to provide a new methodology for the dynamic confinements and cooperative principles in the semi-crystalline SMP towards multiple SMEs.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 226
Author(s):  
Jinsong Yang ◽  
Weitao Lou

The effects of oxidative aging on the static and dynamic properties of nitrile rubber at the molecular scale were investigated by molecular dynamics simulation. The aged nitrile rubber models were constructed by introducing hydroxyl groups and carbonyl groups into rubber molecular chains to mimic oxidative aging. The static and dynamic properties of the unaged and aged nitrile rubber under different conditions were evaluated by mean square displacement, self-diffusion coefficients, hydrogen bond, fractional free volume, radial distribution function, cohesive energy density and solubility parameter. The results show that the elevated temperature intensified significantly the mobility of rubber molecular chains and fractional free volume, while the compressive strain displayed the opposite effect resulting in packing and rearrangement of rubber chains. The introduction of hydroxyl groups and carbonyl groups enhanced the polarity, intermolecular interactions, the volume and rigidity of molecular chains, implying weaker mobility of molecular chains as compared to unaged models. The compressive strain and oxidative aging both decreased the fractional free volume, which inhibited gaseous and liquid diffusion into the rubber materials, and slowed down the oxidative aging rate. This study provides insights to better understand the effect of molecular changes due to oxidative aging on the structural and dynamic properties of rubber materials at the molecular level.


2022 ◽  
pp. 2101965
Author(s):  
Takafumi Noguchi ◽  
Nobuhiro Akioka ◽  
Yuri Kojima ◽  
Akifumi Kawamura ◽  
Takashi Miyata
Keyword(s):  

AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015207
Author(s):  
Qingli Ma ◽  
Yong Wang ◽  
Youlin Gu ◽  
Nanxiang Zhao ◽  
Sheng Luo ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Esra Caliskan ◽  
Sergey Shishatskiy ◽  
Silvio Neumann ◽  
Volker Abetz ◽  
Volkan Filiz

In the present work, a set of anthracene maleimide monomers with different aliphatic side groups obtained by Diels Alder reactions were used as precursors for a series of polymers of intrinsic microporosity (PIM) based homo- and copolymers that were successfully synthesized and characterized. Polymers with different sizes and shapes of aliphatic side groups were characterized by size-exclusion chromatography (SEC), (nuclear magnetic resonance) 1H-NMR, thermogravimetric (TG) analysis coupled with Fourier-Transform-Infrared (FTIR) spectroscopy (TG-FTIR) and density measurements. The TG-FTIR measurement of the monomer-containing methyl side group revealed that the maleimide group decomposes prior to the anthracene backbone. Thermal treatment of homopolymer methyl-100 thick film was conducted to establish retro-Diels Alder rearrangement of the homopolymer. Gas and water vapor transport properties of homopolymers and copolymers were investigated by time-lag measurements. Homopolymers with bulky side groups (i-propyl-100 and t-butyl-100) experienced a strong impact of these side groups in fractional free volume (FFV) and penetrant permeability, compared to the homopolymers with linear alkyl side chains. The effect of anthracene maleimide derivatives with a variety of aliphatic side groups on water vapor transport is discussed. The maleimide moiety increased the water affinity of the homopolymers. Phenyl-100 exhibited a high water solubility, which is related to a higher amount of aromatic rings in the polymer. Copolymers (methyl-50 and t-butyl-50) showed higher CO2 and CH4 permeability compared to PIM-1. In summary, the introduction of bulky substituents increased free volume and permeability whilst the maleimide moiety enhanced the water vapor affinity of the polymers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Lingyun ◽  
Xu Shenpeng ◽  
Lou Yan

Bulk amorphous alloys have some good mechanical properties due to their special atomic arrangement and are now popular in the field of materials. Zr-based amorphous alloys have good mechanical properties, but they are different from lattice slip materials with high ductility. When these materials are compressed and deformed, it generates a concentrated elastic force in the shear zone that causes instantaneous amorphous fracture. The extremely poor plasticity of Zr-based amorphous materials highlight their shortcomings and make them difficult to use in engineering applications. In this paper, it is found that the plasticity of Zr-based amorphous alloys is enhanced to a certain extent by intermittent ultrasonic vibration-assisted compression (IUVC). The ultrasonic vibration stress of IUVC can increase the extra free volume of Zr-based amorphous alloys and increase their degree of “rejuvenation”, which is manifested as an increase in plasticity. To explore how IUVC affects the plasticity of Zr-based amorphous alloys, we design experiments to analyse the effects of different intermittent times, pre-pressures and ultrasonic amplitudes on the plasticity of amorphous alloys.


Sign in / Sign up

Export Citation Format

Share Document