Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process

2003 ◽  
Vol 37 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Sébastien Saby ◽  
Malik Djafer ◽  
Guang-Hao Chen
2001 ◽  
Vol 44 (10) ◽  
pp. 203-208 ◽  
Author(s):  
G.-H. Chen ◽  
S. Saby ◽  
M. Djafer ◽  
H.-K. Mo

This paper presents three new approaches to reduce excess sludge production in activated sludge systems: 1) modification of conventional activated sludge process with insertion of a sludge holding tank in the sludge return line; 2) chlorination of excess sludge so as to minimize excess sludge production; and 3) utilization of a metabolic uncoupler, 3, 3′, 4′, 5-Tetrachlorosalicylanilide (TCS) to maximize futile activity of sludge microorganisms thereby leading to a reduction of sludge growth. Pilot study was carried out to evaluate this modified activated sludge process (OSA). It has been confirmed that the OSA process is effective in reducing excess sludge; particularly when the ORP level in the sludge holding tank was kept at -250 mV, more than 50% of the excess sludge was reduced. This process can maintain the effluent quality and even perform with a better sludge settleability than a conventional system. Experimental work on the second approach showed that chlorination treatment of excess sludge at a chlorine dose of 0.066 g Cl2/g MLSS reduced the excess sludge by 60%, while concentration of THMS was found below 200 ppb in the treated sludge. However, such sludge chlorination treatment sacrificed sludge settleability. Thus, it is not feasible to introduce the chlorination step to a conventional system. The third approach confirmed that addition of TCS could reduce sludge growth effectively if the TCS concentration is greater than 0.4 ppm. A 0.8-ppm concentration of TCS actually reduced excess sludge by 45%. It was also experimentally demonstrated that presence of TCS increases the portion of active sludge microorganisms over the entire microbial population.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
B. Subha ◽  
M. Muthukumar

Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction.


1998 ◽  
Vol 27 (5) ◽  
pp. 356-361 ◽  
Author(s):  
Kenji KATSURA ◽  
Takahiro FUKUI ◽  
Masahiko MIURA ◽  
Akira AKASHI ◽  
Susumu HASEGAWA

1999 ◽  
Vol 53 (10) ◽  
pp. 1339-1344
Author(s):  
Kingo Chu ◽  
Satoru Ishizuka ◽  
Masahide Shibata

Sign in / Sign up

Export Citation Format

Share Document