central composite
Recently Published Documents


TOTAL DOCUMENTS

2189
(FIVE YEARS 888)

H-INDEX

58
(FIVE YEARS 11)

2022 ◽  
Vol 227 ◽  
pp. 107118
Author(s):  
Saqr A.A. Al-Muraisy ◽  
Lais Americo Soares ◽  
Srirat Chuayboon ◽  
Shahrul Bin Ismail ◽  
Stéphane Abanades ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
pp. 99
Author(s):  
Ahmed M. Mustafa ◽  
Eugenia Mazzara ◽  
Doaa Abouelenein ◽  
Simone Angeloni ◽  
Sonia Nunez ◽  
...  

Black mulberry, Morus nigra L. (family: Moraceae), is a healthy food and medicinal plant. Microwave hydrodiffusion and gravity (MHG) is one of the most innovative applications of solvent-free microwave extraction. The aim of this study was to optimize for the first time the MHG solvent-free extraction of polyphenols and sugars from M. nigra fruits. Optimization was carried out using a central composite design (CCD) with selected responses such as extraction yield, total polyphenol (TPC), flavonoid (TFC), anthocyanin (TAC), and sugar (TSC) contents, in addition to DPPH radical scavenging, and α-glucosidase (AGHi), lipase (Li), and xanthine oxidase (XOi) inhibition as tools to evaluate the best parameters for efficient and rapid extraction of black mulberry. The optimized extract was characterized in terms of the aforementioned parameters to validate the models, and was further analyzed for 36 individual polyphenols using HPLC-MS/MS. The optimized MHG extract was finally compared with traditional extracts, and demonstrated much better performance in terms of TPC, TAC, and Li, while the traditional extracts showed better XOi and AGHi. In conclusion, MHG is a valuable green technique for the production of non-degraded black mulberry polyphenol-rich extract and we suggest its larger use in the pharmaceutical and food industries.


Author(s):  
Tebogo Mphatlalala Mokgehle ◽  
Ntakadzeni Madala ◽  
Wilson Mugera Gitari ◽  
Nikita Tawanda Tavengwa

Abstract A new, fast and efficient method, hyphenated microwave-assisted aqueous two-phase extraction (MA-ATPE) was applied in the extraction of α-solanine from Solanum retroflexum. This environmentally friendly extraction method applied water and ethanol as extraction solvents. Central composite design (CCD) was performed which included numerical parameters such as time, mass of plant powder and microwave power. The categorical factors included the chaotrope — NaCl or the kosmotrope — Na2CO3. Fitting the central composite design response surface model to the data generated a quadratic model with a good fit (R2 = 0.920). The statistically significant (p < 0.05) parameters such as time and mass of plant powder were influential in the extraction of α-solanine. Quantification of α-solanine was achieved using a robust and sensitive feature of the ultra-high performance quadrupole time of flight mass spectrometer (UHPLC-qTOF-MS), multiple reaction monitoring (MRM). The optimized condition for the extraction of α-solanine in the presence of NaCl and Na2CO3 was a period of 1 min at a mass of 1.2 g using a microwave power of 40%. Maximal extraction of α-solanine was 93.50 mg kg−1 and 72.16 mg kg−1 for Na2CO3 and NaCl, respectively. The synergistic effect of salting-out and microwave extraction was influential in extraction of α-solanine. Furthermore, the higher negative charge density of the kosmotrope (Na2CO3) was responsible for its greater extraction of α-solanine than chaotrope (NaCl). The shorter optimal extraction times of MA-ATPE make it a potential technique that could meet market demand as it is a quick, green and efficient method for removal of toxic metabolites in nutraceuticals.


2022 ◽  
Vol 72 (4) ◽  
pp. e437
Author(s):  
Ş. S. Seçilmiş ◽  
D. Koçak Yanık ◽  
S. Fadıloğlu ◽  
F. Göğüş

The factors affecting the microwave bleaching of sunflower oil and the interaction between them were investigated and optimized by response surface methodology using a three-factor five-level central composite rotatable design. Microwave power, time and the amount of bleaching clay were selected as independent variables studied in the range of 70-120 W, 2-15 min, and 0.01-0.5%. The dependent variables that measure the bleaching efficiency and oil quality were evaluated as hue angle, chroma and totox value. Optimization was carried out by minimizing totox and chroma and maximizing hue angle. Hue angle, chroma and totox were found as 96.91, 37.66 and 23.31 under optimal conditions. Optimal microwave bleaching was successfully performed by using less bleaching clay (0.4%) and a shorter time (8 min) compared to the current industrial application without any adverse effect on oil quality. Hence, microwave bleaching is thought to be an alternative method for the bleaching of edible oils.


Author(s):  
Emmanuel Ikechukwu Ugwu ◽  
Jonah Chukwuemeka Agunwamba

Corn Cob ash was used in competitive adsorption of copper, zinc, and chromium from wastewater. The central composite design; a sub-set of response surface methodology was used to optimize the adsorption of the heavy metals. The result of the statistical parameters showed the coefficient of determination (R2) of 1.000, 0.999, and 1.000 for copper, zinc, and chromium respectively. The optimal conditions obtained for adsorbent dosage, initial concentration, temperature, contact time, and particle size were 13.20 mg, 79.72 mg/l, 34.95 °C, 40.38 min, and 1400 µm, respectively with the desirability of 1.000. The predicted and the actual values of metal removal obtained were 69.41%, 76.37%, as well as 70.44%, 72.50%, 77.90 % and 71.00% for copper, zinc, and chromium respectively. The ressult indicated a good conformity between the model predicted values and the actual values, thus having small errors of 3.09%, 1.53 % and 0.56 % for copper, zinc, and chromium respectively.


Sign in / Sign up

Export Citation Format

Share Document