central composite design
Recently Published Documents





2022 ◽  
Vol 227 ◽  
pp. 107118
Saqr A.A. Al-Muraisy ◽  
Lais Americo Soares ◽  
Srirat Chuayboon ◽  
Shahrul Bin Ismail ◽  
Stéphane Abanades ◽  

2022 ◽  
Vol 15 (1) ◽  
pp. 99
Ahmed M. Mustafa ◽  
Eugenia Mazzara ◽  
Doaa Abouelenein ◽  
Simone Angeloni ◽  
Sonia Nunez ◽  

Black mulberry, Morus nigra L. (family: Moraceae), is a healthy food and medicinal plant. Microwave hydrodiffusion and gravity (MHG) is one of the most innovative applications of solvent-free microwave extraction. The aim of this study was to optimize for the first time the MHG solvent-free extraction of polyphenols and sugars from M. nigra fruits. Optimization was carried out using a central composite design (CCD) with selected responses such as extraction yield, total polyphenol (TPC), flavonoid (TFC), anthocyanin (TAC), and sugar (TSC) contents, in addition to DPPH radical scavenging, and α-glucosidase (AGHi), lipase (Li), and xanthine oxidase (XOi) inhibition as tools to evaluate the best parameters for efficient and rapid extraction of black mulberry. The optimized extract was characterized in terms of the aforementioned parameters to validate the models, and was further analyzed for 36 individual polyphenols using HPLC-MS/MS. The optimized MHG extract was finally compared with traditional extracts, and demonstrated much better performance in terms of TPC, TAC, and Li, while the traditional extracts showed better XOi and AGHi. In conclusion, MHG is a valuable green technique for the production of non-degraded black mulberry polyphenol-rich extract and we suggest its larger use in the pharmaceutical and food industries.

Tebogo Mphatlalala Mokgehle ◽  
Ntakadzeni Madala ◽  
Wilson Mugera Gitari ◽  
Nikita Tawanda Tavengwa

Abstract A new, fast and efficient method, hyphenated microwave-assisted aqueous two-phase extraction (MA-ATPE) was applied in the extraction of α-solanine from Solanum retroflexum. This environmentally friendly extraction method applied water and ethanol as extraction solvents. Central composite design (CCD) was performed which included numerical parameters such as time, mass of plant powder and microwave power. The categorical factors included the chaotrope — NaCl or the kosmotrope — Na2CO3. Fitting the central composite design response surface model to the data generated a quadratic model with a good fit (R2 = 0.920). The statistically significant (p < 0.05) parameters such as time and mass of plant powder were influential in the extraction of α-solanine. Quantification of α-solanine was achieved using a robust and sensitive feature of the ultra-high performance quadrupole time of flight mass spectrometer (UHPLC-qTOF-MS), multiple reaction monitoring (MRM). The optimized condition for the extraction of α-solanine in the presence of NaCl and Na2CO3 was a period of 1 min at a mass of 1.2 g using a microwave power of 40%. Maximal extraction of α-solanine was 93.50 mg kg−1 and 72.16 mg kg−1 for Na2CO3 and NaCl, respectively. The synergistic effect of salting-out and microwave extraction was influential in extraction of α-solanine. Furthermore, the higher negative charge density of the kosmotrope (Na2CO3) was responsible for its greater extraction of α-solanine than chaotrope (NaCl). The shorter optimal extraction times of MA-ATPE make it a potential technique that could meet market demand as it is a quick, green and efficient method for removal of toxic metabolites in nutraceuticals.

Sign in / Sign up

Export Citation Format

Share Document