Parametric studies on vertical boundary location in dynamic finite element analyses

1997 ◽  
Vol 62 (3) ◽  
pp. 595-601
Author(s):  
N.G. Sarigul
2014 ◽  
Vol 30 (4) ◽  
pp. 1775-1799 ◽  
Author(s):  
Arash Khosravifar ◽  
Ross W. Boulanger ◽  
Sashi K. Kunnath

An equivalent static analysis (ESA) procedure is proposed for the design of extended pile shafts subjected to liquefaction-induced lateral spreading during earthquake loading. The responses of extended pile shafts for a range of soil, structure and ground motion conditions were examined parametrically using nonlinear dynamic finite element analyses (NDA). The results of those parametric analyses were used to develop and calibrate the proposed ESA procedure. The ESA procedure addresses both the nonliquefaction and liquefaction cases, and includes criteria that identify conditions which tend to produce excessive demands or collapse conditions. The ESA procedure, its limitations, and issues important for design are discussed.


2004 ◽  
Vol 126 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Hiroshi Yatabe ◽  
Naoki Fukuda ◽  
Tomoki Masuda ◽  
Masao Toyoda

In this study, the deformability of high-grade pipelines subjected to an axial compressive deformation was experimentally and analytically discussed. Six cases of axial compression experiments with high-grade line pipe were carried out. The pipe specimens had various material properties and wall thickness. Finite-element analyses were also carried out and verified the reliability. Then, a finite-element analysis method for evaluating the deformability of the line pipe was established. By using this method, parametric studies were carried out. The effects of the strain-hardening behavior and pipe geometry on the deformability of the high-grade pipelines were examined.


Author(s):  
C.Y. Chin ◽  
Claudia Kayser ◽  
Michael Pender

This paper provides results from carrying out two-dimensional dynamic finite element analyses to determine the applicability of simple pseudo-static analyses for assessing seismic earth forces acting on embedded cantilever and propped retaining walls appropriate for New Zealand. In particular, this study seeks to determine if the free-field Peak Ground Acceleration (PGAff) commonly used in these pseudo-static analyses can be optimized. The dynamic finite element analyses considered embedded cantilever and propped walls in shallow (Class C) and deep (Class D) soils (NZS 1170.5:2004). Three geographical zones in New Zealand were considered. A total of 946 finite element runs confirmed that optimized seismic coefficients based on fractions of PGAff can be used in pseudo-static analyses to provide moderately conservative estimates of seismic earth forces acting on retaining walls. Seismic earth forces were found to be sensitive to and dependent on wall displacements, geographical zones and soil classes. A reclassification of wall displacement ranges associated with different geographical zones, soil classes and each of the three pseudo-static methods of calculations (Rigid, Stiff and Flexible wall pseudo-static solutions) is presented. The use of different ensembles of acceleration-time histories appropriate for the different geographic zones resulted in significantly different calculated seismic earth forces, confirming the importance of using geographic-specific motions. The recommended location of the total dynamic active force (comprising both static and dynamic forces) for all cases is 0.7H from the top of the wall (where H is the retained soil height).


Sign in / Sign up

Export Citation Format

Share Document