acceleration time histories
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 25)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Olga V. PAVLENKO

Abstract Source and site effects of 2003 Tokachi-oki earthquake (Japan, Mw~8.3) and their influence on the distribution of peak ground accelerations (PGA) in the near-fault zones are studied. Based on records of KiK-net vertical arrays, models of soil behavior are constructed, i.e. vertical distributions of stresses and strains induced in soil layers by strong motion. The method is used suggested by Pavlenko and Irikura and previously applied for studying soil behavior during 1995 Kobe, 2000 Tottori, and 2011 Tohoku earthquakes. During the Tokachi-oki earthquake, we did not find a widespread nonlinearity of soft soil behavior. Manifestations of soil nonlinearity were observed at sites closest to the source; at remote sites where high PGA were recorded, soil behavior was virtually linear, and shear moduli in soils increased till the moments of the highest intensity of motion, then decreased. The shapes of acceleration time histories at remote sites indicate directivity effects: seismic waves radiated by the crack tip during its propagation along a section of the fault plane came to the stations simultaneously. Soil hardening occurred at these sites that increased amplification and PGA on the surface. Similar effects were observed during 2011 Tohoku earthquake; evidently, they can occur during future strong earthquakes.


2021 ◽  
Vol 9 (10) ◽  
pp. 639-655
Author(s):  
Stephen A. Irinyemi ◽  
◽  
Domenico Lombardi ◽  
Syed M. Ahmad ◽  
◽  
...  

Dams are very important in Ghanas economic development and environmental improvement. Although Ghana dams are seismically far from the active zone, accurately analysed dams should be evaluated since failure could severely impact the people in the flood environment and the regions economy on a large scale. This paper proposes a numerical procedure for the static, slope stability, and dynamic analysis of the Akosombo embankment dam. Nineteen horizontal acceleration time histories recorded data was used based on Maximum Design Earthquake (MDE), Maximum Credible Earthquake (MCE), Design Basis Earthquake (DBE) and Operating Basis Earthquake (OBE) data. The numerical results estimated showed that the Akosombo embankment dam is likely to experience moderate deformations during the different design earthquakes. The result also indicated that non-linear analysis capable of capturing dominant non-linear mechanisms could be used to assess the stability of embankment dams. The factor of safety (FS) calculated was greater than 1.5 for high reservoir, rapid drawdown condition and low reservoir condition whereas, the FS values were found to be 1.42 for slow drawdown condition.


Author(s):  
D. Patsialis ◽  
A. A. Taflanidis ◽  
A. Giaralis

AbstractInerter-based vibration absorbers (IVAs), such as the tuned-mass-damper-inerter (TMDI), have become popular in recent years for the earthquake protection of building structures. Previous studies using linear structural models have shown that IVAs can achieve enhanced vibration suppression, but at the expense of increased control forces exerted from the IVA to the host building structure. The authors recently developed a bi-objective IVA design framework for linearly behaving buildings to balance between structural performance (drift/acceleration suppression) and IVA forces. This paper extends the framework to multi-storey hysteretic/yielding structures under seismic excitation. Though the proposed design framework can accommodate any type of IVA, the focus is herein on TMDI applications, with tuned-mass-damper (TMD) and tuned-inerter-damper (TID) treated as special cases of the TMDI. Earthquake hazard is modeled through representative, design-level acceleration time-histories and response of the IVA-equipped structure is evaluated through nonlinear response-history analysis. A high-fidelity finite element model (FEM) is established to accurately describe hysteretic structural behavior. To reduce the computational burden, a reduced order model (ROM) is based on the original FEM, using the framework proposed recently by the first and second authors. The ROM maintains the accuracy of the original FEM while enabling for a computationally efficient solution to the optimization problem. As an illustrative example, the bi-objective design for different IVA placements along the height of a non-linear benchmark 9-storey steel frame structure is examined. The accuracy of the ROM-based design is evaluated by comparing performance to the FEM-based response predictions across the entire Pareto front resulting from the bi-objective optimization. Then, the designs and associated performance predicted by using a linear or a nonlinear structural model are compared to evaluate how the explicit consideration of nonlinearities, as well as the degree of nonlinear behavior, impact the IVA design and efficiency.


2021 ◽  
Author(s):  
Ryan Terpsma ◽  
Rika Wright Carlsen ◽  
Ron Szalkowski ◽  
Sushant Malave ◽  
Alice Lux Fawzi ◽  
...  

ABSTRACT Introduction The Advanced Combat Helmet (ACH) military specification (mil-spec) provides blunt impact acceleration criteria that must be met before use by the U.S. warfighter. The specification, which requires a helmeted magnesium Department of Transportation (DOT) headform to be dropped onto a steel hemispherical target, results in a translational headform impact response. Relative to translations, rotations of the head generate higher brain tissue strains. Excessive strain has been implicated as a mechanical stimulus leading to traumatic brain injury (TBI). We hypothesized that the linear constrained drop test method of the ACH specification underreports the potential for TBI. Materials and Methods To establish a baseline of translational acceleration time histories, we conducted linear constrained drop tests based on the ACH specification and then performed simulations of the same to verify agreement between experiment and simulation. We then produced a high-fidelity human head digital twin and verified that biological tissue responses matched experimental results. Next, we altered the ACH experimental configuration to use a helmeted Hybrid III headform, a freefall cradle, and an inclined anvil target. This new, modified configuration allowed both a translational and a rotational headform response. We applied this experimental rotation response to the skull of our human digital twin and compared brain deformation relative to the translational baseline. Results The modified configuration produced brain strains that were 4.3 times the brain strains from the linear constrained configuration. Conclusions We provide a scientific basis to motivate revision of the ACH mil-spec to include a rotational component, which would enhance the test’s relevance to TBI arising from severe head impacts.


Author(s):  
Mauro Aimar ◽  
Sebastiano Foti

ABSTRACT The possible amplification of seismic waves in soil deposits is crucial for the seismic design of buildings and geotechnical systems. The most common approaches for the numerical simulation of seismic site response are the equivalent linear (EQL) and the nonlinear (NL). Even though their advantages and limitations have been investigated in several studies, the relative field of applicability is still under debate. This study tested both methods over a wide population of soil models, which were subjected to a set of acceleration time histories recorded from strong earthquakes. A thorough comparison of the results of the EQL and the NL approaches was carried out, to identify the conditions in which the relative differences are significant. This assessment allowed for the definition of simplified criteria to predict when the two schemes are or are not compatible for large expected shaking levels. The proposed criteria are based on simple and intuitive parameters describing the soil deposit and the ground-motion parameters, which can be predicted straightforwardly. Therefore, this study provides a scheme for the choice between the EQL and the NL approaches that can be used even at the preliminary design stages. It appears that the EQL approach provides reliable amplification estimates in soil deposits with thickness up to 30 m, except for very deformable soils, but this depth range may be extended at long vibration periods. This result reveals a good level of reliability of the EQL approach for various soil conditions encountered in common applications, even for high-intensity shaking.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 228-236
Author(s):  
Cristian Soriano Camelo ◽  
Samuel Felipe Mollepaza Tarazona ◽  
Maria Cascão Ferreira de Almeida ◽  
Márcio de Souza Soares de Almeida ◽  
Ricardo Garske Borges

Brazil is in an intraplate area of low to moderate seismicity, this means that few or no records of strong ground motions are available. Part of the site response analysis and seismic design of structures require the use of acceleration time-histories compatible with a specified target response spectrum. This study aims to utilize methodologies based on the use of existing earthquake records from a well-known database and synthetic accelerograms to obtain ground motions representative of the Brazilian Southeast Region, particularly in the offshore Campos Basin. Information from a probabilistic seismic hazard assessment performed in the interest area was employed as input to the methodologies applied in terms of target response spectrum and the dominant earthquake scenarios. Besides, the acceleration time-histories of two relatively recent earthquakes that occurred in the Brazilian Southeast were used to apply one of the approaches to obtain a synthetic spectrum compatible accelerogram.


2021 ◽  
Vol 13 (1) ◽  
pp. 1273-1289
Author(s):  
Qifeng Jiang ◽  
Mianshui Rong ◽  
Wei Wei ◽  
Bin Zhang ◽  
Jixin Wang

Abstract The thick soft superficial layers of the seabed greatly influence ground motion generally. It is worth studying how to find out the influence of these soft layers on ground motion parameters and determine reasonable seismic fortification parameters for ocean engineering. Numerical experiments of site response analysis are designed using two offshore engineering sites in this study. First, the borehole profiles are selected and stripped layer by layer to generate new profiles. Second, 108 acceleration time histories are synthesized which basically represent the diversity of input motions’ amplitude and frequency. Third, a method that can automatically calculate characteristic periods and normalize response spectra is created to improve calculation efficiency. Fourth, peak accelerations, response spectra, and characteristic periods at different depths of the profiles with different stripping depths are calculated. The results show that the thick soft superficial layers can significantly decrease peak ground accelerations and increase characteristic periods, resulting in serious “low-fat” response spectra. The situation can be greatly improved by stripping off the soft superficial layers. After stripping off the thick soft superficial silt layers, if stripping is continued further, the variation in the superficial amplification ratios of peak accelerations and superficial characteristic periods will no longer be drastic, and the superficial amplification ratios and characteristic periods both tend to be mostly the same. The relative deviation of the amplification ratio of peak ground acceleration between a profile stripped and that without stripping can be 143%, and it can be 83% for characteristic period. It is advisable to strip off thick soft superficial layers to perform site response analysis, and the shear force at the bottom of the silt should be considered in engineering based on local seismic activity level, and the silt’s and the structure’s physical parameters.


Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Valeria Leggieri ◽  
Annamaria di Lernia ◽  
Gaetano Elia ◽  
Domenico Raffaele ◽  
Giuseppina Uva

The paper describes the numerical approach adopted to investigate the effects of vibrations induced on reinforced concrete (R.C.) buildings by the excavation works needed to bury an existing railway line crossing an urban area in the south of Italy. The construction works are carried out in dolomitic rocks, characterized by a high resistance to excavation. Therefore, they may have a great impact on the surrounding environment in terms of induced vibrations. The study is conducted through an uncoupled approach, investigating the dynamic response of the geotechnical system and the above-surface structure, separately. The impulse force equivalent to the dynamic action of a breaker hammer is used as input motion for 2D finite element (FE) geotechnical simulations of the wave propagation process occurring during the excavation. Then, the acceleration time histories obtained from the geotechnical analyses are adopted to study the dynamic performance of an “index” R.C. building, representing the most recurrent structural typology in the examined area, through a 3D FE model. The results show how the adoption of a mitigation strategy consisting in the execution of a preliminary vertical cut followed by a rock crushing treatment allows to significantly reduce the vibrations induced by the excavation processes on existing buildings.


2020 ◽  
Vol 18 (1) ◽  
pp. 122-135
Author(s):  
Abdellah Boudina ◽  
Malek Hammoutene

Purpose This paper aims to artificially generate seismic accelerograms compatible with the response spectrum imposed as a function of the given environmental parameters such as magnitude, epicentral distance and type of soil. This study is necessary for the non-linear dynamic analysis of structures in regions where real seismic records are not available. Design/methodology/approach First, a stochastic iterative method is used to estimate the spectral densities of acceleration power from the respective target response spectra. Thereafter, based on the superposition of seismic waves, a subsequent iterative procedure, which implicitly takes into account the non-stationary character of temporal intensity content of strong ground motions, is developed to synthesize, from these power spectral density, the corresponding acceleration time histories. The phase contents of the ground acceleration samples, thus obtained, are generated using a probability density function of phase derivatives with characteristic parameters estimated from seismological considerations. When based on seismic codes spectrum compatible criteria, this procedure can be used to generate strong ground motions for structural design. Findings The results found show that the forms of acceleration of the target and the simulated signals have similar characteristics in terms of strong motion durations, the peak ground acceleration values, corresponding time of occurrence and also, the corresponding cumulative energy functions follow practically the same pattern of variations. Originality/value The aim of this study is to generate seismic accelerograms compatible with regulatory spectra by the composition of the three acceleration duration segments based on environmental parameters (magnitude, epicentral distance and type of soil) and which subsequently serves to control the time envelope of the generated signals, and therefore the random generation of phase derivatives, which has not been previously treated.


Author(s):  
Gregory Stephens ◽  
David Michalski ◽  
Chantal S. Parenteau ◽  
Roger Burnett

Abstract Rear occupant protection in rear crashes is a complex issue. Structural intrusion has been shown to be a significant factor in the injury mechanism of second-row children. In this study, a new model was developed to help quantify dynamic second-row intrusion, in terms of displacement, velocity, and acceleration, and assess its effect on rear occupant responses as a function of time. A mathematical model was developed using crash test data based on two reconstructed field accidents involving two different rear-ended vehicles with second-row children. The model also used the corresponding FMVSS 301R-type rear barrier tests of a similar vehicle. The crash test pulse data and videos from FMVSS 301R-type tests were analyzed to determine the timing and magnitude of second-row intrusion. Crash tests that had been conducted to simulate the field accidents were then used to validate the model. These tests included instrumented ATDs (Anthropometric Test Device) seated in the second-row area of the struck vehicles. The biomechanical responses were used to assess the validity of the mathematical model. Comparison between the mathematical model and the test data showed good agreement. For example, the model correctly showed that the dynamic second-row intrusion was greater than residual/static intrusion/displacement. The model also predicted accelerations that were in good agreement with the test data. Video analysis and head/chest acceleration time histories of the ATD’s indicated that intrusion occurred early and was an important factor in the occupant responses. Both the extent and velocity of dynamic intrusion also influenced the biomechanical responses. The model predicted head and chest accelerations that were greater than the overall vehicle accelerations due to localized structural intrusion. The mathematical model developed in this study is a first to assess the dynamic effect of second-row intrusion on rear occupant responses. Identifying factors that influence injury mechanisms are important when assessing the potential effectiveness of countermeasures.


Sign in / Sign up

Export Citation Format

Share Document