Local isomorphism, free operator, chainable and monomorphic relations, relational or strong interval

2018 ◽  
pp. 1-16 ◽  
Author(s):  
Desmond Tutu Ayentimi ◽  
John Burgess ◽  
Kantha Dayaram

AbstractLocal isomorphism constitutes the regulatory, cognitive and normative profile of a host country. The regulatory institutional setting reflects the rules and legislation governing collective bargaining agreements, trade unions, local content laws and employment relationships. The cultural or cognitive dimension supports the widely held cultural and social knowledge and the normative profile acknowledges the influences of social groups and organizations on acceptable normative behaviour. Earlier literature lends support to the importance of institutional profile and its influence on the design and implementation of multinational enterprises’ human resource management policies and practices. This paper seeks to advance the concept of local isomorphism and highlight the implications of local isomorphism for future research on the transfer of multinational enterprises’ human resource management practices across and between subsidiaries.


Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 4005-4014
Author(s):  
Ali Pakdaman ◽  
Mehdi Zakki

It is known that every digital covering map p:(E,k) ? (B,?) has the unique path lifting property. In this paper, we show that its inverse is true when the continuous surjective map p has no conciliator point. Also, we prove that a digital (k,?)-continuous surjection p:(E,k)? (B,?) is a digital covering map if and only if it is a local isomorphism, when all digital spaces are connected. Moreover, we find out a loop criterion for a digital covering map to be a radius n covering map.


Author(s):  
Wencai Liu

Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $H$ as a perturbation of the free operator $H_0$, where $(H_0u)(n)= u({n+1})+u({n-1})$. For $H_0$ (no perturbation), $\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$ and $H_0$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $H_0+V$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $\limsup _{n\to \infty } n|V(n)|=a<\infty .$ We obtain a lower/upper bound of $a$ such that $H_0+V$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $\{ E_j\}_{j=1}^N$ in $(-2,2)$ with $0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$, we construct the explicit potential $V(n)=\frac{O(1)}{1+|n|}$ such that $H=H_0+V$ has eigenvalues $\{ E_j\}_{j=1}^N$.5: Given any countable set of points $\{ E_j\}$ in $(-2,2)$ with $0\notin \{ E_j\}+\{ E_j\}$, and any function $h(n)>0$ going to infinity arbitrarily slowly, we construct the explicit potential $|V(n)|\leq \frac{h(n)}{1+|n|}$ such that $H=H_0+V$ has eigenvalues $\{ E_j\}$.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650053 ◽  
Author(s):  
P. A. Azeef Muhammed ◽  
A. R. Rajan

A completely simple semigroup [Formula: see text] is a semigroup without zero which has no proper ideals and contains a primitive idempotent. It is known that [Formula: see text] is a regular semigroup and any completely simple semigroup is isomorphic to the Rees matrix semigroup [Formula: see text] (cf. D. Rees, On semigroups, Proc. Cambridge Philos. Soc. 36 (1940) 387–400). In the study of structure theory of regular semigroups, Nambooripad introduced the concept of normal categories to construct the semigroup from its principal left (right) ideals using cross-connections. A normal category [Formula: see text] is a small category with subobjects wherein each object of the category has an associated idempotent normal cone and each morphism admits a normal factorization. A cross-connection between two normal categories [Formula: see text] and [Formula: see text] is a local isomorphism [Formula: see text] where [Formula: see text] is the normal dual of the category [Formula: see text]. In this paper, we identify the normal categories associated with a completely simple semigroup [Formula: see text] and show that the semigroup of normal cones [Formula: see text] is isomorphic to a semi-direct product [Formula: see text]. We characterize the cross-connections in this case and show that each sandwich matrix [Formula: see text] correspond to a cross-connection. Further we use each of these cross-connections to give a representation of the completely simple semigroup as a cross-connection semigroup.


1973 ◽  
Vol 9 (3) ◽  
pp. 363-366 ◽  
Author(s):  
J.N. Ward

It is shown that a condition of Kurzwell concerning fixed-points of certain operators on a finite group G is sufficient to ensure that G is soluble. The result generalizes those of Martineau on elementary abelian fixed-point-free operator groups.


Sign in / Sign up

Export Citation Format

Share Document