A novel family with recessive von Willebrand disease due to compound heterozygosity for a splice site mutation and a missense mutation in the von Willebrand factor gene

2002 ◽  
Vol 105 (2) ◽  
pp. 135-138 ◽  
Author(s):  
Giancarlo Castaman ◽  
Elisabetta Novella ◽  
Evelina Castiglia ◽  
Jeroen C.J Eikenboom ◽  
Francesco Rodeghiero
Genomics ◽  
1994 ◽  
Vol 24 (1) ◽  
pp. 190-191 ◽  
Author(s):  
G. Mertes ◽  
M. Ludwig ◽  
B. Finkelnburg ◽  
M. Krawczak ◽  
R. Schwaab ◽  
...  

1999 ◽  
Vol 82 (09) ◽  
pp. 1061-1064 ◽  
Author(s):  
Kingsley Hampton ◽  
F. Eric Preston ◽  
Ian Peake ◽  
Anne Goodeve ◽  
I. Mandy Nesbitt

SummaryUsing an ELISA-based method to detect type 2N von Willebrand disease (VWD), we found two individuals with absent FVIII binding. Direct sequencing of the FVIII binding region of the von Willebrand factor (VWF) gene showed that one individual had an R854Q substitution whilst the other had a T791M substitution. The very low FVIII binding and the VWF:Ag levels in both individuals suggested a second defect on the other VWF allele. Conformation sensitive gel electrophoresis of polymerase chain reaction amplified DNA was used to detect an additional change in the VWF gene of each patient. Direct sequencing confirmed a previously unreported G to A transition in the donor splice site in intron 25 of both individuals which should result in a null allele. This was confirmed by mRNA analysis. These two individuals therefore have compound heterozygous VWD in which the only expressed allele has a type 2N mutation. In our population, such compound heterozygosity appears to be a significant cause of type 2N VWD.


1993 ◽  
Vol 69 (02) ◽  
pp. 173-176 ◽  
Author(s):  
Anna M Randi ◽  
Elisabetta Sacchi ◽  
Gian Carlo Castaman ◽  
Francesco Rodeghiero ◽  
Pier Mannuccio Mannucci

SummaryType I von Willebrand disease (vWD) Vicenza is a rare variant with autosomal dominant transmission, characterized by the presence of supranormal von Willebrand factor (vWF) multimers in plasma, similar to those normally found in endothelial cells and megakaryocytes. The patients have very low levels of plasma vWF contrasting with a mild bleeding tendency. The pathophysiology of this subtype is still unknown. The presence of supranormal multimers in the patients’ plasma could be due to a mutation in the vWF molecule which affects post-translational processing, or to a defect in the cells’ processing machinery, independent of the vWF molecule. In order to determne if type I vWD Vicenza is linked to the vWF gene, we studied six polymorphic systems identified within the vWF gene in two apparently unrelated families with type I vWD Vicenza. The results of this study indicate a linkage between vWF gene and the type I vWD Vicenza trait. This strongly suggests that type I vWD Vicenza is due to a mutation in one of the vWF alleles, which results in an abnormal vWF molecule that is processed to a lesser extent than normal vWF.


1994 ◽  
Vol 72 (02) ◽  
pp. 180-185 ◽  
Author(s):  
David J Mancuso ◽  
Elodee A Tuley ◽  
Ricardo Castillo ◽  
Norma de Bosch ◽  
Pler M Mannucci ◽  
...  

Summaryvon Willebrand factor gene deletions were characterized in four patients with severe type III von Willebrand disease and alloantibodies to von Willebrand factor. A PCR-based strategy was used to characterize the boundaries of the deletions. Identical 30 kb von Willebrand factor gene deletions which include exons 33 through 38 were identified in two siblings of one family by this method. A small 5 base pair insertion (CCTGG) was sequenced at the deletion breakpoint. PCR analysis was used to detect the deletion in three generations of the family, including two family members who are heterozygous for the deletion. In a second family, two type III vWD patients, who are distant cousins, share an -56 kb deletion of exons 22 through 43. The identification and characterization of large vWF gene deletions in these type III vWD patients provides further support for the association between large deletions in both von Willebrand factor alleles and the development of inhibitory alloantibodies.


Haematologica ◽  
2011 ◽  
Vol 96 (6) ◽  
pp. 881-887 ◽  
Author(s):  
V. Daidone ◽  
L. Gallinaro ◽  
M. Grazia Cattini ◽  
E. Pontara ◽  
A. Bertomoro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document