Disordered control of the urinary bladder after human spinal cord injury: what are the problems?

Author(s):  
Patrick J. Potter
2015 ◽  
Vol 26 (5) ◽  
pp. 2167-2177 ◽  
Author(s):  
John Cirillo ◽  
Finnegan J. Calabro ◽  
Monica A. Perez

1994 ◽  
Vol 80 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Shlomo Constantini ◽  
Wise Young

✓ Recent clinical trials have reported that methylprednisolone sodium succinate (MP) or the monosialic ganglioside GM1 improves neurological recovery in human spinal cord injury. Because GM1 may have additive or synergistic effects when used with MP, the authors compared MP, GM1, and MP+GM1 treatments in a graded rat spinal cord contusion model. Spinal cord injury was caused by dropping a rod weighing 10 gm from a height of 1.25, 2.5, or 5.0 cm onto the rat spinal cord at T-10, which had been exposed via laminectomy. The lesion volumes were quantified from spinal cord Na and K shifts at 24 hours after injury and the results were verified histologically in separate experiments. A single dose of MP (30 mg/kg), given 5 minutes after injury, reduced 24-hour spinal cord lesion volumes by 56% (p = 0.0052), 28% (p = 0.0065), and 13% (p > 0.05) in the three injury-severity groups, respectively, compared to similarly injured control groups treated with vehicle only. Methylprednisolone also prevented injury-induced hyponatremia and increased body weight loss in the spine-injured rats. When used alone, GM1 (10 to 30 mg/kg) had little or no effect on any measured variable compared to vehicle controls; when given concomitantly with MP, GM1 blocked the neuroprotective effects of MP. At a dose of 3 mg/kg, GM1 partially prevented MP-induced reductions in lesion volumes, while 10 to 30 mg/kg of GM1 completely blocked these effects of MP. The effects of MP on injury-induced hyponatremia and body weight loss were also blocked by GM1. Thus, GM1 antagonized both central and peripheral effects of MP in spine-injured rats. Until this interaction is clarified, the authors recommend that MP and GM1 not be used concomitantly to treat acute human spinal cord injury. Because GM1 modulates protein kinase activity, protein kinases inhibit lipocortins, and lipocortins mediate anti-inflammatory effects of glucocorticoids, it is proposed that the neuroprotective effects of MP are partially due to anti-inflammatory effects and that GM1 antagonizes the effects of MP by inhibiting lipocortin. Possible beneficial effects of GM1 reported in central nervous system injury may be related to the effects on neural recovery rather than acute injury processes.


2006 ◽  
Vol 6 ◽  
pp. 2445-2449 ◽  
Author(s):  
Subramanian Vaidyanathan ◽  
Peter L. Hughes ◽  
Bakul M. Soni

In a male patient with cervical spinal cord injury, the urinary bladder may go into spasm when a urethral catheter is removed and a new Foley catheter is inserted. Before the balloon is inflated, the spastic bladder may push the Foley catheter out or the catheter may slip out of a small-capacity bladder. An inexperienced health professional may inflate the balloon of a Foley catheter in the urethra without realizing that the balloon segment of the catheter is lying in the urethra instead of the urinary bladder. When a Foley balloon is inflated in the urethra, a tetraplegic patient is likely to develop autonomic dysreflexia. This is a medical emergency and requires urgent treatment. Before the incorrectly placed Foley catheter is removed, it is important to document whether the balloon has been inflated in the urinary bladder or not. The clinician should first use the always available tools of observation and palpation at the bedside without delays of transportation. A misplaced balloon will often be evident by a long catheter sign, indicating excessive catheter remaining outside the patient. Radiological diagnosis is not frequently required and, when needed, should employ the technique most readily available, which might be a body and pelvic CT without intravenous contrast. An alternative radiological technique to demonstrate the position of the balloon of the Foley catheter is described. Three milliliters of nonionic X-ray contrast medium, Ioversol (OPTIRAY 300), is injected through the side channel of the Foley catheter, which is used for inflating the balloon. Then, with a catheter-tip syringe, 30 ml of sterile Ioversol is injected through the main lumen of the Foley catheter. Immediately thereafter, an X-ray of the pelvis (including perineum) is taken. By this technique, both the urinary bladder and balloon of the Foley catheter are visualized by the X-ray contrast medium. When a Foley catheter has been inserted correctly, the balloon of the Foley catheter should be located within the urinary bladder, but when the Foley catheter is misplaced with the balloon inflated in the urethra, a round opaque shadow of the Foley balloon is seen separately below the urinary bladder. This radiological study takes only a few minutes to perform, can be carried out bedside with a mobile X-ray machine, and does not require special expertise or preparations, unlike transrectal ultrasonography. When a Foley balloon is inflated in the urethra, abdominal ultrasonography will show an absence of the Foley balloon within the bladder. The technique described above aids in positive demonstration of a Foley balloon lying outside the urinary bladder. Such documentation proves valuable in planning future treatment, education of health professionals, and settlement of malpractice claims.


2021 ◽  
Author(s):  
Homa Zamani ◽  
Mina Soufizomorrod ◽  
Saeed Oraee-Yazdani ◽  
Dariush Naviafar ◽  
Mohammadhosein Akhlaghpasand ◽  
...  

Abstract Cell-based therapies are considered as promising strategies for spinal cord regeneration. However, a combinatorial cell therapeutic approach seems more beneficial as it can target various aspects of the injury. Here, we assessed the safety and feasibility of autologous mucosal Olfactory Ensheathing Cell (OEC) and bone marrow Mesenchymal Stem Cell (MSC) co-transplantation in patients with chronic, complete (American Spinal Injury Association (ASIA) classification A) Spinal Cord Injury (SCI). Three patients with the traumatic SCI of the thoracic level were enrolled. They received autologous OEC and MSC combination through the lumbar puncture. All adverse events and possible functional outcomes were documented performing pre- and post-operative general clinical examination, Magnetic Resonance Imaging (MRI), neurological assessment based on the International Standard of Neurological Classification for SCI (ISNCSCI), and functional evaluation using Spinal Cord Independence Measure version III (SCIM III). No serious safety issue was recorded during the two years of follow-up. MRI findings remained unchanged with no neoplastic tissue formation. ASIA impairment scale improved from A to B in one of the participants. SCIM III evaluation also showed some degrees of progress in this patient's quality of life. The two other patients had negligible or no improvement in their sensory scores without any changes in the ASIA impairment scale and SCIM III scores. No motor recovery was observed in any of the participants. Overall, this two-year trial was not associated with any adverse findings, which may suggest the safety of autologous OEC and bone marrow MSC combination for the treatment of human SCI.This study was registered at the Iranian Registry of Clinical Trials (IRCT registration number: IRCT20160110025930N2/ registration date: 2018-09-29).


Spinal Cord ◽  
2014 ◽  
Vol 53 (3) ◽  
pp. 190-194 ◽  
Author(s):  
T Yoshizawa ◽  
K Kadekawa ◽  
P Tyagi ◽  
S Yoshikawa ◽  
R Takahashi ◽  
...  

2017 ◽  
Vol 34 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Robert M. Grumbles ◽  
Christine K. Thomas

2019 ◽  
Vol 39 (2) ◽  
pp. 586-593 ◽  
Author(s):  
Elena E. Keller ◽  
Irina Patras ◽  
Ioan Hutu ◽  
Karin Roider ◽  
Karl‐Dietrich Sievert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document