Brain–computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms

Author(s):  
Dennis J. McFarland ◽  
Dean J. Krusienski ◽  
Jonathan R. Wolpaw
2019 ◽  
Author(s):  
Jeffrey M. Weiss ◽  
Robert A. Gaunt ◽  
Robert Franklin ◽  
Michael Boninger ◽  
Jennifer L. Collinger

AbstractWhile recent advances in intracortical brain-computer interfaces (iBCI) have demonstrated the ability to restore motor and communication functions, such demonstrations have generally been confined to controlled experimental settings and have required bulky laboratory hardware. Here, we developed and evaluated a self-contained portable iBCI that enabled the user to interact with various computer programs. The iBCI, which weighs 1.5 kg, consists of digital headstages, a small signal processing hub, and a tablet PC. A human participant tested the portable iBCI in laboratory and home settings under an FDA Investigational Device Exemption (NCT01894802). The participant successfully completed 96% of trials in a 2D cursor center-out task with the portable iBCI, a rate indistinguishable from that achieved with the standard laboratory iBCI. The participant also completed a variety of free-form tasks, including drawing, gaming, and typing.


2021 ◽  
Vol 11 (12) ◽  
pp. 2918-2927
Author(s):  
A. Shankar ◽  
S. Muttan ◽  
D. Vaithiyanathan

Brain Computer Interface (BCI) is a fast growing area of research to enable communication between our brains and computers. EEG based motor imagery BCI involves the user imagining movement, the subsequent recording and signal processing on the electroencephalogram signals from the brain, and the translation of those signals into specific commands. Ultimately, motor imagery BCI has the potential to be applied to helping those with special abilities recover motor control. This paper presents an evaluation of performance for EEG based motor imagery BCI with a classification accuracy of 80.2%, making use of features extracted using the Fast Fourier Transform and the Discrete Wavelet Transform, and classification is done using an Artificial Neural Network. It goes on to conclude how the performance is affected by the particular feature sets and neural network parameters.


2013 ◽  
Vol 284-287 ◽  
pp. 1616-1621 ◽  
Author(s):  
Jzau Sgeng Lin ◽  
Sun Ming Huang

A wireless EEG-based brain-computer interface (BCI) and an FPGA-based system to control electric wheelchairs through a Bluetooth interface was proposed in this paper for paralyzed patients. Paralytic patients can not move freely and only use wheelchairs in their daily life. Especially, people getting motor neuron disease (MND) can only use their eyes and brain to exercise their willpower. Therefore, real-time EEG and winking signals can help these patients effectively. However, current BCI systems are usually complex and have to send the brain waves to a personal computer or a single-chip microcontroller to process the EEG signals. In this paper, a simple BCI system with two channels and an FPGA-based circuit for controlling DC motor can help paralytic patients easily to drive the electric wheelchair. The proposed BCI system consists of a wireless physiological with two-channel acquisition module and an FPGA-based signal processing unit. Here, the physiological signal acquisition module and signal processing unit were designed for extracting EEG and winking signals from brain waves which can directly transformed into control signals to drive the electric wheelchairs. The advantages of the proposed BCI system are low power consumption and compact size so that the system can be suitable for the paralytic patients. The experimental results showed feasible action for the proposed BCI system and drive circuit with a practical operating in electric wheelchair applications.


Sign in / Sign up

Export Citation Format

Share Document