human participant
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 32)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
Vol 11 (1) ◽  
pp. 1-17
Author(s):  
Alessia Vignolo ◽  
Henry Powell ◽  
Francesco Rea ◽  
Alessandra Sciutti ◽  
Luke Mcellin ◽  
...  

We tested the hypothesis that, if a robot apparently invests effort in teaching a new skill to a human participant, the human participant will reciprocate by investing more effort in teaching the robot a new skill, too. To this end, we devised a scenario in which the iCub and a human participant alternated in teaching each other new skills. In the Adaptive condition of the robot teaching phase , the iCub slowed down its movements when repeating a demonstration for the human learner, whereas in the Unadaptive condition it sped the movements up when repeating the demonstration. In a subsequent participant teaching phase , human participants were asked to give the iCub a demonstration, and then to repeat it if the iCub had not understood. We predicted that in the Adaptive condition , participants would reciprocate the iCub’s adaptivity by investing more effort to slow down their movements and to increase segmentation when repeating their demonstration. The results showed that this was true when participants experienced the Adaptive condition after the Unadaptive condition and not when the order was inverted, indicating that participants were particularly sensitive to the changes in the iCub’s level of commitment over the course of the experiment.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Siqi Wang ◽  
Chen Wang ◽  
Weinan Zhang ◽  
Wentao Fan ◽  
Fan Liu ◽  
...  

AbstractAt present, no effective treatment exists for the clinical toxicity of cobalt nanoparticles (CoNPs, 30 nm) after metal-on-metal (MOM) artificial joint replacement. As such, a better understanding of the CoNPs-toxicity mechanism is necessary and urgent for the development of effective and safe detoxification drugs. Our purpose was to explore the role of bioactive nano-selenium (BNS, > 97%) in antagonizing the toxicity of CoNPs and its mechanism through the Keap1-Nrf2-ARE signaling pathway. To examine BNS detoxification, we exposed HUVEC cells to CoNPs and BNS for 24 h, before measuring cell activity, reactive oxygen species (ROS), the GSH level, inflammatory factors, and KNA signaling pathway-related transcript and protein expression. CoNPs stimulate intracellular inflammation and ROS production to bring about significant downregulation of cellular activity and the GSH level. Conversely, BNS reduces ROS generation and suppresses inflammatory factors within cells to reduce CoNPs-mediated cytotoxicity, possibly via the KNA signaling pathway. Based on our results, BNS antagonizes CoNPs toxic effects by suppressing ROS production through the KNA pathway. Our research provides new insight into the clinical treatment of CoNPs toxicity and explores the potential of BNS in detoxification therapy. Trial registration: no human participant.


2021 ◽  
Author(s):  
Breanne Christie ◽  
Luke E. Osborn ◽  
David P. McMullen ◽  
Ambarish S. Pawar ◽  
Sliman J. Bensmaia ◽  
...  

AbstractBackgroundElectrically stimulating the somatosensory cortex can partially restore the sense of touch. Though this technique bypasses much of the neuroaxis, prior studies with non-human primates have found that conscious detection of touch elicited by intracortical microstimulation (ICMS) lags behind the detection of vibration applied to the skin. These findings may have been influenced by a mismatch in stimulus intensity; typically, vibration is perceived as more intense than ICMS, which can significantly impact temporal perception.ObjectiveThe goal of this study was to evaluate the relative latency at which intensity-matched vibration and ICMS are perceived in a human subject.MethodsA human participant implanted with microelectrode arrays in somatosensory cortex performed a reaction time task and a temporal order judgment (TOJ) task. In the reaction time task, the participant was presented with ICMS or vibration and verbal response times were obtained. In the TOJ task, the participant was sequentially presented with a pair of stimuli – ICMS followed by vibration or vice versa – and reported which stimulus occurred first.ResultsWhen ICMS and vibration were matched in perceived intensity, the reaction time to vibration was ∼50 ms faster than ICMS. However, in the TOJ task, ICMS and vibratory sensations arose at comparable latencies, with points of subjective simultaneity that were not significantly different from zero.ConclusionsBecause the perception of ICMS is slower than that of intensity-matched vibration, it may be necessary to stimulate at stronger ICMS intensities (thus decreasing reaction time) when incorporating ICMS sensory feedback into neural prostheses.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013173
Author(s):  
Matthew Stephen Fifer ◽  
David P McMullen ◽  
Luke E Osborn ◽  
Tessy M Thomas ◽  
Breanne P Christie ◽  
...  

Background and Objectives:The restoration of touch to fingers and fingertips is critical to achieving dexterous neuroprosthetic control for individuals with sensorimotor dysfunction. However, localized fingertip sensations have not been evoked via intracortical microstimulation (ICMS).Methods:Using a novel intraoperative mapping approach, we implanted electrode arrays in the finger areas of left and right somatosensory cortex and delivered ICMS over a 2-year period in a human participant with spinal cord injury.Results:Stimulation evoked tactile sensations in 8 fingers, including fingertips, spanning both hands. Evoked percepts followed expected somatotopic arrangements. The subject was able to reliably identify up to 7 finger-specific sites spanning both hands in a finger discrimination task. The size of the evoked percepts was on average 33% larger than a fingerpad, as assessed via manual markings of a hand image. The size of the evoked percepts increased modestly with increased stimulation intensity, growing 21% as pulse amplitude increased from 20µA to 80µA. Detection thresholds were estimated on a subset of electrodes, with estimates of 9.2-35µA observed, roughly consistent with prior studies.Discussion:These results suggest that ICMS can enable the delivery of consistent and localized fingertip sensations during object manipulation by neuroprostheses for individuals with somatosensory deficits.Clinical Trial Information:This study is registered on ClinicalTrials.gov with identifier NCT03161067.


2021 ◽  
Author(s):  
Christopher L Hughes ◽  
Sharlene N Flesher ◽  
Robert A Gaunt

AbstractBackgroundIntracortical microstimulation (ICMS) of the somatosensory cortex can restore sensation to people with neurological diseases. However, many aspects of ICMS are poorly understood, including the effect of continuous stimulation on percept intensity over time.ObjectiveHere, we evaluate how tactile percepts, evoked by ICMS in the somatosensory cortex of a human participant adapt over time.MethodsWe delivered continuous and intermittent ICMS to the somatosensory cortex and assessed the reported intensity of tactile percepts over time in a human participant. Experiments were conducted across approximately one year and linear mixed effects models were used to assess significance.ResultsContinuous stimulation at high frequencies led to rapid decreases in intensity, while low frequency stimulation maintained percept intensity for longer periods. Burst-modulated stimulation extended the time before the intensity began to decrease, but all protocols ultimately resulted in complete sensation loss within one minute. Intermittent stimulation paradigms with several seconds between stimulus trains also led to decreases in intensity on many electrodes, but never resulted in extinction of sensation after over three minutes of stimulation. Additionally, longer breaks between each pulse train resulted in some recovery of the stimulus-evoked percepts. For several electrodes, intermittent stimulation had almost no effect on the perceived intensity.ConclusionsIntermittent ICMS paradigms were more effective at maintaining percepts, and given that transient activity in the somatosensory cortex dominates the response to object contact, this stimulation method may mimic natural cortical activity and improve the perception of stimulation over time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas M. Gregg ◽  
Vladimir Sladky ◽  
Petr Nejedly ◽  
Filip Mivalt ◽  
Inyong Kim ◽  
...  

AbstractChronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nigel Gebodh ◽  
Zeinab Esmaeilpour ◽  
Abhishek Datta ◽  
Marom Bikson

AbstractWe present a dataset combining human-participant high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES). Data include within participant application of nine High-Definition tES (HD-tES) types, targeting three cortical regions (frontal, motor, parietal) with three stimulation waveforms (DC, 5 Hz, 30 Hz); more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG, EOG), and continuous behavioral vigilance/alertness metrics. Experiment 1 and 2 consisted of participants performing a continuous vigilance/alertness task over three 70-minute and two 70.5-minute sessions, respectively. Demographic data were collected, as well as self-reported wellness questionnaires before and after each session. Participants received all 9 stimulation types in Experiment 1, with each session including three stimulation types, with 4 trials per type. Participants received two stimulation types in Experiment 2, with 20 trials of a given stimulation type per session. Within-participant reliability was tested by repeating select sessions. This unique dataset supports a range of hypothesis testing including interactions of tDCS/tACS location and frequency, brain-state, physiology, fatigue, and cognitive performance.


2021 ◽  
Author(s):  
Nicholas M Gregg ◽  
Vladimir Sladky ◽  
Petr Nejedly ◽  
Filip Mivalt ◽  
Inyong Kim ◽  
...  

Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (infradian) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and infradian cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and infradian IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and infradian (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Emma M. van Zoelen ◽  
Karel van den Bosch ◽  
Mark Neerincx

Becoming a well-functioning team requires continuous collaborative learning by all team members. This is called co-learning, conceptualized in this paper as comprising two alternating iterative stages: partners adapting their behavior to the task and to each other (co-adaptation), and partners sustaining successful behavior through communication. This paper focuses on the first stage in human-robot teams, aiming at a method for the identification of recurring behaviors that indicate co-learning. Studying this requires a task context that allows for behavioral adaptation to emerge from the interactions between human and robot. We address the requirements for conducting research into co-adaptation by a human-robot team, and designed a simplified computer simulation of an urban search and rescue task accordingly. A human participant and a virtual robot were instructed to discover how to collaboratively free victims from the rubbles of an earthquake. The virtual robot was designed to be able to real-time learn which actions best contributed to good team performance. The interactions between human participants and robots were recorded. The observations revealed patterns of interaction used by human and robot in order to adapt their behavior to the task and to one another. Results therefore show that our task environment enables us to study co-learning, and suggest that more participant adaptation improved robot learning and thus team level learning. The identified interaction patterns can emerge in similar task contexts, forming a first description and analysis method for co-learning. Moreover, the identification of interaction patterns support awareness among team members, providing the foundation for human-robot communication about the co-adaptation (i.e., the second stage of co-learning). Future research will focus on these human-robot communication processes for co-learning.


2021 ◽  
Author(s):  
Catriona L Scrivener ◽  
Jade B Jackson ◽  
Marta Morgado Correia ◽  
Marius Mada ◽  
Alexandra Woolgar

The powerful combination of transcranial magnetic stimulation (TMS) concurrent with functional magnetic resonance imaging (fMRI) provides rare insights into the causal relationships between brain activity and behaviour. Despite a recent resurgence in popularity, TMS-fMRI remains technically challenging. Here we examined the feasibility of applying TMS during short gaps between fMRI slices to avoid incurring artefacts in the fMRI data. We quantified signal dropout and changes in temporal signal-to-noise ratio (tSNR) for TMS pulses presented at timepoints from 100ms before to 100ms after slice onset. Up to 3 pulses were delivered per volume using MagVenture's MR-compatible TMS coil. We used a spherical phantom, two 7-channel TMS-dedicated surface coils, and a multiband (MB) sequence (factor=2) with interslice gaps of 100ms and 40ms, on a Siemens 3T Prisma-fit scanner. For comparison we repeated a subset of parameters with a more standard single-channel TxRx (birdcage) coil, and with a human participant and surface coil set up. We found that, even at 100% stimulator output, pulses applied at least -40ms/+50ms from the onset of slice readout avoid incurring artifacts. This was the case for all three setups. Thus, an interslice protocol can be achieved with a frequency of up to ~10 Hz, using a standard EPI sequence (slice acquisition time: 62.5ms, interslice gap: 40ms). Faster stimulation frequencies would require shorter slice acquisition times, for example using in-plane acceleration. Interslice TMS-fMRI protocols provide a promising avenue for retaining flexible timing of stimulus delivery without incurring TMS artifacts.


Sign in / Sign up

Export Citation Format

Share Document