Matrix population model with density-dependent recruitment for assessment of age-structured wildlife populations

1997 ◽  
Vol 59 (2) ◽  
pp. 255-262
Author(s):  
A Jensen
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3971 ◽  
Author(s):  
Masami Fujiwara ◽  
Jasmin Diaz-Lopez

A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population and can be used for calculating an asymptotic finite population growth rate (λ) and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism’s life history type and the true values of λ. In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ. Here, the weights are given by survivorship curve after discounting with λ. To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used for discounting the rate, was the best approach. However, stage-structured models performed poorly in estimating generation time, regardless of the methods used for constructing the models. Based on the results, we recommend using an age-structured matrix population model or the Euler-Lotka equation for calculating λ and generation time when life table data are available. Then, these age-structured vital rates can be converted into a stage-structured model for further analyses.


2021 ◽  
Vol 83 (6-7) ◽  
Author(s):  
Vladimir Kozlov ◽  
Sonja Radosavljevic ◽  
Vladimir Tkachev ◽  
Uno Wennergren

AbstractWe consider an age-structured density-dependent population model on several temporally variable patches. There are two key assumptions on which we base model setup and analysis. First, intraspecific competition is limited to competition between individuals of the same age (pure intra-cohort competition) and it affects density-dependent mortality. Second, dispersal between patches ensures that each patch can be reached from every other patch, directly or through several intermediary patches, within individual reproductive age. Using strong monotonicity we prove existence and uniqueness of solution and analyze its large-time behavior in cases of constant, periodically variable and irregularly variable environment. In analogy to the next generation operator, we introduce the net reproductive operator and the basic reproduction number $$R_0$$ R 0 for time-independent and periodical models and establish the permanence dichotomy: if $$R_0\le 1$$ R 0 ≤ 1 , extinction on all patches is imminent, and if $$R_0>1$$ R 0 > 1 , permanence on all patches is guaranteed. We show that a solution for the general time-dependent problem can be bounded by above and below by solutions to the associated periodic problems. Using two-side estimates, we establish uniform boundedness and uniform persistence of a solution for the general time-dependent problem and describe its asymptotic behaviour.


Sign in / Sign up

Export Citation Format

Share Document