Growth hormone promotes cytoplasmic maturation of in vitro matured bovine oocytes

1998 ◽  
Vol 49 (1) ◽  
pp. 312 ◽  
Author(s):  
F. Izadyar ◽  
W.J. Hage ◽  
B. Colenbrander ◽  
M.M. Bevers
2016 ◽  
Vol 28 (2) ◽  
pp. 231
Author(s):  
I. Lebedeva ◽  
G. Singina ◽  
E. Shedova ◽  
A. Lopukhov ◽  
N. Zinovieva

Aging of mammalian oocytes is the time-dependent process of cytological and molecular transformations leading to a decline in the ovum quality and developmental capacity. We have previously shown that 2 related pituitary hormones, prolactin (PRL) and growth hormone (GH), may decelerate abnormal changes in the morphology of metaphase II (MII) chromosomes in bovine cumulus-enclosed oocytes (CEO) aging in vitro. The goal of the present research was to examine the involvement of different isoforms of nitric oxide synthase (NOS) in the actions of PRL and GH on MII chromosomes in aging bovine oocytes. Bovine CEO were matured for 20 h in TCM 199 containing 10% FCS, 10 μg mL–1 porcine FSH, and 10 μg mL–1 ovine LH. After IVM, CEO or denuded oocytes (DO) were cultured for 24 h in the aging medium of TCM 199 supplemented with 10% FCS (control). In experimental groups, the medium contained either 50 ng mL–1 bovine PRL or 10 ng mL–1 bovine GH and/or NOS inhibitors. The following inhibitors were applied: (1) N-propyl-l-arginine (NPLA; an inhibitor of neuronal NOS (nNOS), 5 μM) and (2) L-NAME (an effective inhibitor of both endothelial NOS (eNOS) and nNOS, 20 μM). Destructive changes of MII chromosomes in oocytes were assessed by the following morphological signs: decondensation, partial adherence, chromosome clumping into a single mass, and fragmentation. The total activity of NOS in oocytes was determined by NADPH-diaphorase staining. The data from 4–5 replicates were analysed by ANOVA. During CEO aging in the control medium, the rate of MII oocytes with destructive changes of chromosomes rose from 16.8 ± 2.1% to 58.5 ± 1.4% (P < 0.001), whereas both PRL and GH reduced this rate up to 42.0 ± 1.3% and 46.5 ± 1.6%, respectively (P < 0.001). The nNOS inhibitor NPLA abolished (P < 0.001) the inhibitory effect of PRL on abnormal modifications of chromosomes in CEO but did not affect the frequency of these modifications in the control or GH-treated groups. In the absence of the hormones, L-NAME (the eNOS+nNOS inhibitor) decreased the rate of aging CEOs with chromosome abnormalities from 58.5 ± 1.4% to 41.2 ± 2.5% (P < 0.001), acting unidirectionally with PRL and GH. Meanwhile, L-NAME enhanced (P < 0.05) the suppressing effect of PRL on destructive changes of MII chromosomes but did not influence the similar effect of GH. At the same time the chromosome morphology in senescent DOs was unaffected by the hormones or NOS inhibitors. Furthermore, the total activity of NOS in oocytes separated of cumulus after 24 h of aging was similar in the control and experimental groups. Thus, the inhibitory effect of GH on abnormal modifications of MII chromosomes in aging bovine oocytes may be related to a reduction of the eNOS activity in cumulus cells, whereas the respective effect of PRL is likely to be achieved by both inactivation of eNOS and activation of nNOS. This research was supported by RFBR (No. 13–04–01888).


2007 ◽  
Vol 99 (1-2) ◽  
pp. 202-207 ◽  
Author(s):  
L.S.S. Barretto ◽  
V.S.D. Caiado Castro ◽  
J.M. Garcia ◽  
G.Z. Mingoti

2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4277 ◽  
Author(s):  
Angelo Bertani Giotto ◽  
Daniela Dos Santos Brum ◽  
Francielli Weber Santos ◽  
Antonio Carlos Galarça Guimarães ◽  
Cibele Garcia Moreira Gonçalves ◽  
...  

<p>Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the <em>in vitro </em>maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P&gt;0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P&lt;0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P&lt;0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P&lt;0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P&lt;0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of <em>in vitro </em>fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).</p>


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4277
Author(s):  
Angelo Bertani Giotto ◽  
Daniela Dos Santos Brum ◽  
Francielli Weber Santos ◽  
Antonio Carlos Galarça Guimarães ◽  
Cibele Garcia Moreira Gonçalves ◽  
...  

Oocyte maturation is the key factor affecting the fertilization and embryonic development. Factors such as oocyte density and oxygen tension can directly influence the IMV. Thus, the objective of this study was to evaluate the effect of the association of oxygen tensions (5% or 20%) with different oocyte densities (1:10?l or 1:20?l) in the in vitro maturation (IVM) of bovine oocytes on maturation and fertilization rates, ROS production and antioxidant activity. Three experiments were performed with bovine oocytes that were obtained from slaughterhouse ovaries. After selection, the oocytes were randomly distributed in four treatments: 1:10/5%; 1:10/20%; 1:20/5%and 1:20/20% for each experiment. In experiment I, nuclear maturation status and cytoplasmic maturation were evaluated through detection of the first polar body by immunofluorescence and the mitochondrial reorganization assay. In experiment II, ROS production and antioxidant activity were analyzed in oocytes and IVM medium after 24 h of maturation through detection of ROS, reduced glutathione (GSH) and Superoxide dismutase activity by spectrofluorimetric methods. In experiment III, fertilization was evaluated through pronucleus formation, sperm penetration with or without decondensation and polyspermy rates by immunofluorescence. In experiment I, the nuclear maturation and cytoplasmic maturation were similar among treatments (P>0.05). In experiment II, reactive oxygen species in oocytes were elevated in treatments with low oxygen tension which was independent of oocyte density (P<0.05). Additionally, ROS levels in IVM medium were higher in treatments with high oocyte density by volume of medium, which was independent of oxygen tension (P<0.05). In Experiment III, the fertilization and penetration rates were higher in the treatment with 20% oxygen tension and high oocyte density (P<0.05). Furthermore, a high incidence of polyspermy was observed in groups with high oxygen tension and low oocyte density (P<0.05). In conclusion, the results of this study indicate an interaction between oxygen tension and oocyte density, which increases ROS production in certain associations and subsequently influences the rates of in vitro fertilization of bovine oocytes. The improved rates of IVF were obtained when IVM was conducted using 20% oxygen tension and high oocyte density (1:20 ul).


Sign in / Sign up

Export Citation Format

Share Document