scholarly journals Pairs of sequences with a unique realization by bipartite graphs

1976 ◽  
Vol 21 (3) ◽  
pp. 224-234 ◽  
Author(s):  
Michael Koren
Author(s):  
Armen S. Asratian ◽  
Tristan M. J. Denley ◽  
Roland Häggkvist
Keyword(s):  

Author(s):  
Qiuyu Zhu ◽  
Jiahong Zheng ◽  
Hao Yang ◽  
Chen Chen ◽  
Xiaoyang Wang ◽  
...  
Keyword(s):  

2008 ◽  
Vol 15 (03) ◽  
pp. 379-390 ◽  
Author(s):  
Xuesong Ma ◽  
Ruji Wang

Let X be a simple undirected connected trivalent graph. Then X is said to be a trivalent non-symmetric graph of type (II) if its automorphism group A = Aut (X) acts transitively on the vertices and the vertex-stabilizer Av of any vertex v has two orbits on the neighborhood of v. In this paper, such graphs of order at most 150 with the basic cycles of prime length are investigated, and a classification is given for such graphs which are non-Cayley graphs, whose block graphs induced by the basic cycles are non-bipartite graphs.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Sign in / Sign up

Export Citation Format

Share Document