scholarly journals Cycle partitions of regular graphs

Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).

10.37236/7109 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Jie Han

Let $c\in (0, 1]$ be a real number and let $n$ be a sufficiently large integer. We prove that every $n$-vertex $c n$-regular graph $G$ contains a collection of $\lfloor 1/c \rfloor$ paths whose union covers all but at most $o(n)$ vertices of $G$. The constant $\lfloor 1/c \rfloor$ is best possible when $1/c\notin \mathbb{N}$ and off by $1$ otherwise. Moreover, if in addition $G$ is bipartite, then the number of paths can be reduced to $\lfloor 1/(2c) \rfloor$, which is best possible.


2000 ◽  
Vol 9 (3) ◽  
pp. 241-263 ◽  
Author(s):  
ALAN M. FRIEZE ◽  
LEI ZHAO

Given a graph G = (V, E) and a set of κ pairs of vertices in V, we are interested in finding, for each pair (ai, bi), a path connecting ai to bi such that the set of κ paths so found is edge-disjoint. (For arbitrary graphs the problem is [Nscr ][Pscr ]-complete, although it is in [Pscr ] if κ is fixed.)We present a polynomial time randomized algorithm for finding edge-disjoint paths in the random regular graph Gn,r, for sufficiently large r. (The graph is chosen first, then an adversary chooses the pairs of end-points.) We show that almost every Gn,r is such that all sets of κ = Ω(n/log n) pairs of vertices can be joined. This is within a constant factor of the optimum.


10.37236/1103 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Andrzej Ruciński

A proper edge colouring of a graph is neighbour-distinguishing if for all pairs of adjacent vertices $v$, $w$ the set of colours appearing on the edges incident with $v$ is not equal to the set of colours appearing on the edges incident with $w$. Let ${\rm ndi}(G)$ be the least number of colours required for a proper neighbour-distinguishing edge colouring of $G$. We prove that for $d\geq 4$, a random $d$-regular graph $G$ on $n$ vertices asymptotically almost surely satisfies ${\rm ndi}(G)\leq \lceil 3d/2\rceil$. This verifies a conjecture of Zhang, Liu and Wang for almost all 4-regular graphs.


2020 ◽  
Vol 40 (3) ◽  
pp. 375-382
Author(s):  
Narges Ghareghani ◽  
Iztok Peterin ◽  
Pouyeh Sharifani

A subset \(D\) of the vertex set \(V\) of a graph \(G\) is called an \([1,k]\)-dominating set if every vertex from \(V-D\) is adjacent to at least one vertex and at most \(k\) vertices of \(D\). A \([1,k]\)-dominating set with the minimum number of vertices is called a \(\gamma_{[1,k]}\)-set and the number of its vertices is the \([1,k]\)-domination number \(\gamma_{[1,k]}(G)\) of \(G\). In this short note we show that the decision problem whether \(\gamma_{[1,k]}(G)=n\) is an \(NP\)-hard problem, even for bipartite graphs. Also, a simple construction of a bipartite graph \(G\) of order \(n\) satisfying \(\gamma_{[1,k]}(G)=n\) is given for every integer \(n \geq (k+1)(2k+3)\).


2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Yury J. Ionin

For any 2-distance set in the n-dimensional binary Hamming space , let be the graph with as the vertex set and with two vertices adjacent if and only if the distance between them is the smaller of the two nonzero distances in . The binary spherical representation number of a graph , or bsr(), is the least n such that is isomorphic to , where is a 2-distance set lying on a sphere in . It is shown that if is a connected regular graph, then bsr, where b is the order of and m is the multiplicity of the least eigenvalue of , and the case of equality is characterized. In particular, if is a connected strongly regular graph, then bsr if and only if is the block graph of a quasisymmetric 2-design. It is also shown that if a connected regular graph is cospectral with a line graph and has the same binary spherical representation number as this line graph, then it is a line graph.


10.37236/1647 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Peter J. Cameron ◽  
Dudley Stark

A graph is $n$-e.c.$\,$ ($n$-existentially closed) if for every pair of subsets $U$, $W$ of the vertex set $V$ of the graph such that $U\cap W=\emptyset$ and $|U|+|W|=n$, there is a vertex $v\in V-(U\cup W)$ such that all edges between $v$ and $U$ are present and no edges between $v$ and $W$ are present. A graph is strongly regular if it is a regular graph such that the number of vertices mutually adjacent to a pair of vertices $v_1,v_2\in V$ depends only on whether or not $\{v_1,v_2\}$ is an edge in the graph. The only strongly regular graphs that are known to be $n$-e.c. for large $n$ are the Paley graphs. Recently D. G. Fon-Der-Flaass has found prolific constructions of strongly regular graphs using affine designs. He notes that some of these constructions were also studied by Wallis. By taking the affine designs to be Hadamard designs obtained from Paley tournaments, we use probabilistic methods to show that many non-isomorphic strongly regular $n$-e.c. graphs of order $(q+1)^2$ exist whenever $q\geq 16 n^2 2^{2n}$ is a prime power such that $q\equiv 3\!\!\!\pmod{4}$.


EDUPEDIA ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 75
Author(s):  
Joko Prasetyo

This research aims to: (1) know the criteria of a graph that has a -factor, (2) know the conditions of a regular graph that has a 1-factorization , (3) know the conditions of a regular graph that has a 2-factorization.This research is a qualitative descriptive study using the method of literature study or literature review where a study of books, scientific journals, and other literature languages is carried out relating to factorization on regular graphs. This research begins by discussing the definitions and examples of euler graphs and regular bipartite multigraphs. Next in reviewing the terms of a regular graph which has a 1-factorization and which has a 2-factorization, it starts by discussing the definition and theorem of matching on bipartite graphs, definitions and examples of factorization graphs, then discussing the proof of theorem of regular graphs that have a 1-factor and a regular graph which has a 2-factor.The results of this study indicate that: (1) Graph  is said to be -factorable  or can be factored into -factor , if can be decomposed or be eksplained into spanning subgraphs , where each  has a -factor and is edge-disjoint from , that is 1)  2)  … n) = . (2) The condition for a graph that has a 1-factorization is, if the graph is a -regular bipartite multigraph, with . (3) The condition for a graph that has a 2-factorization is, if the graph is a -regular graph, with .               Key words: Bipartite graphs, Factorization, Decomposition, Regular graph.


10.37236/1582 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexander Kelmans ◽  
Dhruv Mubayi ◽  
Benny Sudakov

Let $T$ be a tree with $t$ vertices. Clearly, an $n$ vertex graph contains at most $n/t$ vertex disjoint trees isomorphic to $T$. In this paper we show that for every $\epsilon >0$, there exists a $D(\epsilon,t)>0$ such that, if $d>D(\epsilon,t)$ and $G$ is a simple $d$-regular graph on $n$ vertices, then $G$ contains at least $(1-\epsilon)n/t$ vertex disjoint trees isomorphic to $T$.


10.37236/6693 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Slobodan Filipovski

The Moore bound $M(k,g)$ is a lower bound on the order of $k$-regular graphs of girth $g$ (denoted $(k,g)$-graphs). The excess $e$ of a $(k,g)$-graph of order $n$ is the difference $ n-M(k,g) $. In this paper we consider the existence of $(k,g)$-bipartite graphs of excess $4$ by studying spectral properties of their adjacency matrices. For a given graph $G$ and for the integers $i$ with $0\leq i\leq diam(G)$, the $i$-distance matrix $A_i$ of $G$ is an $n\times n$ matrix such that the entry in position $(u,v)$ is $1$ if the distance between the vertices $u$ and $v$ is $i$, and zero otherwise. We prove that the $(k,g)$-bipartite graphs of excess $4$ satisfy the equation $kJ=(A+kI)(H_{d-1}(A)+E)$, where $A=A_{1}$ denotes the adjacency matrix of the graph in question, $J$ the $n \times n$ all-ones matrix, $E=A_{d+1}$ the adjacency matrix of a union of vertex-disjoint cycles, and $H_{d-1}(x)$ is the Dickson polynomial of the second kind with parameter $k-1$ and degree $d-1$. We observe that the eigenvalues other than $\pm k$ of these graphs are roots of the polynomials $H_{d-1}(x)+\lambda$, where $\lambda$ is an eigenvalue of $E$. Based on the irreducibility of $H_{d-1}(x)\pm2$, we give necessary conditions for the existence of these graphs. If $E$ is the adjacency matrix of a cycle of order $n$, we call the corresponding graphs graphs with cyclic excess; if $E$ is the adjacency matrix of a disjoint union of two cycles, we call the corresponding graphs graphs with bicyclic excess. In this paper we prove the non-existence of $(k,g)$-graphs with cyclic excess $4$ if $k\geq6$ and $k \equiv1 \!\! \pmod {3}$, $g=8, 12, 16$ or $k \equiv2 \!\! \pmod {3}$, $g=8;$ and the non-existence of $(k,g)$-graphs with bicyclic excess $4$ if $k\geq7$ is an odd number and $g=2d$ such that $d\geq4$ is even.


1995 ◽  
Vol 4 (4) ◽  
pp. 369-405 ◽  
Author(s):  
Svante Janson

The asymptotic distribution of the number of Hamilton cycles in a random regular graph is determined. The limit distribution is of an unusual type; it is the distribution of a variable whose logarithm can be written as an infinite linear combination of independent Poisson variables, and thus the logarithm has an infinitely divisible distribution with a certain discrete Lévy measure. Similar results are found for some related problems. These limit results imply that some different models of random regular graphs are contiguous, which means that they are qualitatively asymptotically equivalent. For example, if r > 3, then the usual (uniformly distributed) random r-regular graph is contiguous to the one constructed by taking the union of r perfect matchings on the same vertex set (assumed to be of even cardinality), conditioned on there being no multiple edges. Some consequences of contiguity for asymptotic distributions are discussed.


Sign in / Sign up

Export Citation Format

Share Document