The effect of amphiphilic counterions on the gel-fluid phase transition of the lipid bilayer

1997 ◽  
Vol 87 (2-3) ◽  
pp. 261-270 ◽  
Author(s):  
Krystian Kubica
2016 ◽  
Vol 113 (18) ◽  
pp. 4953-4957 ◽  
Author(s):  
Carlo Pierleoni ◽  
Miguel A. Morales ◽  
Giovanni Rillo ◽  
Markus Holzmann ◽  
David M. Ceperley

The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron–ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measured in diamond anvil cell experiments but at 25–30 GPa higher pressure. The transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.


Biochemistry ◽  
1974 ◽  
Vol 13 (17) ◽  
pp. 3494-3496 ◽  
Author(s):  
K. R. Srinivasan ◽  
Robert L. Kay ◽  
J. F. Nagle

2017 ◽  
Vol 14 (130) ◽  
pp. 20170127 ◽  
Author(s):  
Sina Youssefian ◽  
Nima Rahbar ◽  
Christopher R. Lambert ◽  
Steven Van Dessel

Given their amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behaviour in an aqueous environment. Around the phase transition temperature, phospholipids transform from a gel-like state to a fluid crystalline structure. In this transition, many key characteristics of the lipid bilayers such as structure and thermal properties alter. In this study, we employed atomistic simulation techniques to study the structure and underlying mechanisms of heat transfer in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers around the fluid–gel phase transformation. To investigate this phenomenon, we performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications.


1988 ◽  
Vol 38 (1) ◽  
pp. 135-162 ◽  
Author(s):  
Karl J. Runge ◽  
Geoffrey V. Chester

Sign in / Sign up

Export Citation Format

Share Document