interface formation
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 56)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
pp. 073168442110602
Author(s):  
Rui Xiao ◽  
Wang Wang ◽  
Jiaqi Shi ◽  
Jun Xiao

While Automated Fiber Placement (AFP) of thermoset matrix composites are widely used in the aviation industry, there is little conclusive research on the relationship between the physical model of bonding interface formation process and the actual bonding strength between prepreg layers formed in AFP process. Although massive amounts of experimental data on prepreg tack have been achieved from existing research, engineers are unable to use these data as a decisive criterion in choosing process parameters. In this research, a prepreg layup physical model based on reptation model and viscoelastic mechanical model is built, in which the bonding interface formation process is divided into two stages, namely, diffusion and viscous stage. Layup-peeling experiments are conducted via a special designed high-speed layup experimental platform so that practical AFP process parameters can be imitated, and a logarithmic curve of layup velocity-peeling energy under different layup pressure is achieved. The slope of the logarithmic curve and the surface morphology of the sample after peeling prove the correctness of the established model. Simultaneously, the experimental data proves that when prepreg is peeled off, the transition from the cohesive failure mode to the interface failure mode occurs at the laying speed between 100 mm/s and 200 mm/s. These results can be used as a reference for choosing AFP process parameters to realize the balance between good bonding quality and harmless separation of adjacent prepreg layers.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yoshiaki Kusaka

AbstractWe investigate the free-boundary problem of a steadily advancing meniscus in a circular capillary tube. The problem is described using the “interface formation model,” which was originally introduced with the aim of avoiding the singularities that arise when classical hydrodynamics is applied to problems with a moving contact line. We prove the existence of an axially symmetric solution in weighted Hölder spaces for low meniscus speeds.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
László Héja ◽  
Ágnes Simon ◽  
Zsolt Szabó ◽  
Julianna Kardos

Connexin (Cx) proteins establish intercellular gap junction channels (Cx GJCs) through coupling of two apposed hexameric Cx hemichannels (Cx HCs, connexons). Pre- and post-GJ interfaces consist of extracellular EL1 and EL2 loops, each with three conserved cysteines. Previously, we reported that known peptide inhibitors, mimicking a variety of Cx43 sequences, appear non-selective when binding to homomeric Cx43 vs. Cx36 GJC homology model subtypes. In pursuit of finding potentially Cx subtype-specific inhibitors of connexon-connexon coupling, we aimed at to understand better how the GJ interface is formed. Here we report on the discovery of Cx GJC subtype-specific protein stabilization centers (SCs) featuring GJ interface architecture. First, the Cx43 GJC homology model, embedded in two opposed membrane bilayers, has been devised. Next, we endorsed the fluctuation dynamics of SCs of the interface domain of Cx43 GJC by applying standard molecular dynamics under open and closed cystine disulfide bond (CS-SC) preconditions. The simulations confirmed the major role of of the unique trans-GJ SC pattern comprising conserved (55N, 56T) and non-conserved (57Q) residues of the apposed EL1 loops in the stabilization of the GJC complex. Importantly, clusters of SC patterns residing close to the GJ interface domain appear to orient the interface formation via the numerous SCs between EL1 and EL2. These include central 54CS-S198C or 61CS-S192C contacts with residues 53R, 54C, 55N, 197D, 199F or 64V, 191P, respectively. In addition, we revealed that GJC interface formation is favoured when the psi dihedral angle of the nearby 193P residue is stable around 180° and the interface SCs disappear when this angle moves to the 0° to −45° range. The potential of the association of non-conserved residues with SC motifs in connexon-connexon coupling makes the development of Cx subtype-specific inhibitors viable.


2021 ◽  
Vol 62 (10) ◽  
pp. 1562-1568
Author(s):  
Akihiro Shibata ◽  
Mamoru Takemura ◽  
Mitsuaki Matsumuro ◽  
Tadashi Kitsudo

2021 ◽  
Vol 70 ◽  
pp. 414-426
Author(s):  
Zhenghua Meng ◽  
Rui Zhou ◽  
Mengyuan Gong ◽  
Wei Guo ◽  
Wei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document