Active control of along wind response of tall building using a fuzzy controller

2001 ◽  
Vol 23 (11) ◽  
pp. 1512-1522 ◽  
Author(s):  
Mohammed Aldawod ◽  
Bijan Samali ◽  
Fazel Naghdy ◽  
Kenny C.S Kwok
2004 ◽  
Vol 130 (4) ◽  
pp. 492-498 ◽  
Author(s):  
Bijan Samali ◽  
Mohammed Al-Dawod ◽  
Kenny C. S. Kwok ◽  
Fazel Naghdy

2014 ◽  
Vol 21 (10) ◽  
pp. 4002-4006 ◽  
Author(s):  
Young-moon Kim ◽  
Ki-pyo You ◽  
Jang-youl You

2012 ◽  
Vol 251 ◽  
pp. 158-163 ◽  
Author(s):  
Gang Yang ◽  
Zhong Mei Dai ◽  
Fu Li ◽  
Zheng Zhi Luo

The regular current collection is very important for high-speed train, and can be obviously improved by the use of active control. In order to study the impact of the fuzzy active control on pantograph-catenary system, the model ohe simulation model is created with the software of simulink. Finally the influences of fuzzy active control on dynamic performances and quality of current collection of the pantograph-catenary system are analyzed. It seems that, the performances of the system with or without active control is established, the fuzzy controller is constructed, and tf the pantograph- catenary system can be improved obviously under the fuzzy active control, the maximum value of the contact force is reduced to 50 percent, the minimum is increased to 80 percent, and the fluctuation extent of the contact force is reduced to 70 percent.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ki-Pyo You ◽  
Jang-Youl You ◽  
Young-Moon Kim

Modern tall buildings use lighter construction materials that have high strength and less stiffness and are more flexible. Although this results in the improvement of structural safety, excessive wind-induced excitations could lead to occupant discomfort. The optimal control law of a linear quadratic Gaussian (LQG) controller with an active tuned mass damper (ATMD) is used for reducing the along-wind response of a tall building. ATMD consists of a second mass with optimum parameters for tuning frequency and damping ratio of the tuned mass damper (TMD), under the stationary random load, was used. A fluctuating along-wind load, acting on a tall building, was treated as a stationary Gaussian white noise and was simulated numerically, in the time domain, using the along-wind load spectra proposed by G. Solari in 1993. Using this simulated wind load, it was possible to calculate the along-wind responses of a tall building (with and without the ATMD), using an LQG controller. Comparing the RMS (root mean square) response revealed that the numerically simulated along-wind responses, without ATMD, are a good approximation to the closed form response, and that the reduced responses with ATMD and LQG controller were estimated by varying the values of control design parameters.


Sign in / Sign up

Export Citation Format

Share Document