Seismic displacement response spectrum estimated from the frame analogy soil amplification model

2001 ◽  
Vol 23 (11) ◽  
pp. 1437-1452 ◽  
Author(s):  
N.T.K Lam ◽  
J.L Wilson ◽  
A.M Chandler
2018 ◽  
Vol 10 (12) ◽  
pp. 4659 ◽  
Author(s):  
Yabin Chen ◽  
Longjun Xu ◽  
Xingji Zhu ◽  
Hao Liu

For seismic resilience-based design (RBD), a selection of recorded time histories for dynamic structural analysis is usually required. In order to make individual structures and communities regain their target functions as promptly as possible, uncertainty of the structural response estimates is in great need of reduction. The ground motion (GM) selection based on a single target response spectrum, such as acceleration or displacement response spectrum, would bias structural response estimates leading significant uncertainty, even though response spectrum variance is taken into account. In addition, resilience of an individual structure is not governed by its own performance, but depends severely on the performance of other systems in the same community. Thus, evaluation of resilience of a community using records matching target spectrum at whole periods would be reasonable because the fundamental periods of systems in the community may be varied. This paper presents a GM selection approach based on a probabilistic framework to find an optimal set of records to match multiple target spectra, including acceleration and displacement response spectra. Two major steps are included in that framework. Generation of multiple sub-spectra from target displacement response spectrum for selecting sets of GMs was proposed as the first step. Likewise, the process as genetic algorithm (GA), evolvement of individuals previously generated, is the second step, rather than using crossover and mutation techniques. A novel technique improving the match between acceleration response spectra of samples and targets is proposed as the second evolvement step. It is proved computationally efficient for the proposed algorithm by comparing with two developed GM selection algorithms. Finally, the proposed algorithm is applied to select GM records according to seismic codes for analysis of four archetype reinforced concrete (RC) frames aiming to evaluate the influence of GM selection considering two design response spectra on structural responses. The implications of design response spectra especially the displacement response spectrum and GM selection algorithm are summarized.


2014 ◽  
Vol 919-921 ◽  
pp. 1039-1042
Author(s):  
Liang Lv ◽  
Bin Liang ◽  
Wen Sheng Wang

Seismic displacement response of cable stayed bridge without back stays was studied in this paper. Based on the cable stayed bridge without back stays on Zhenshui Road in Xinmi City, finite element method (FEM) was applied to calculate and analyze natural vibration and peak displacement response of the structure. The results show that with regard to mid-span and consolidation of pier and main tower, uniaxial seismic wave input results in peak displacement response of corresponding direction is bigger than that of any other direction. Peak displacement response of the top of the main tower is bigger than those of mid-span and consolidation of pier and main tower in any seismic wave input cases, which indicates that the top of the tower needs to be focused in the process of design and construction. Seismic wave along triaxial direction has the biggest impact on the structure. Keywords: cable stayed bridge without back stays; seismic displacement response; seismic wave input; peak displacement response


Author(s):  
Ichiro Ichihashi ◽  
Akira Sone ◽  
Arata Masuda ◽  
Daisuke Iba

In this paper, a number of artificial earthquake ground motions compatible with time-frequency characteristics of recorded actual earthquake ground motion as well as the given target response spectrum are generated using wavelet transform. The maximum non-dimensional displacement of elasto-plastic structures excited these artificial earthquake ground motions are calculated numerically. Displacement response, velocity response and cumulative input energy are shown in the case of the ground motion which cause larger displacement response. Under the given design response spectrum, a selection manner of generated artificial earthquake ground motion which causes lager maximum displacement response of elasto-plastic structure are suggested.


1985 ◽  
Vol 107 (1) ◽  
pp. 197-204 ◽  
Author(s):  
M. Alam ◽  
H. D. Nelson

A shock spectrum procedure is developed to estimate the peak displacement response of linear flexible rotor-bearing systems subjected to a step change in unbalance (i.e., a blade loss). A progressive and a retrograde response spectrum are established. These blade loss response spectra are expressed in a unique non-dimensional form and are functions of the modal damping ratio and the ratio of rotor spin speed to modal damped whirl speed. Modal decomposition using complex modes is utilized to make use of the unique feature of the spectra for the calculation of the peak blade loss displacement response of the rotor system. The procedure is applied to three example systems using several modal superposition strategies. The results of each are compared to true peak displacements obtained by a separate transient response program.


1994 ◽  
pp. 183-192
Author(s):  
Kazuhiko Kawashima ◽  
Jun-ichi Hoshikuma ◽  
Kazuhiro Nagaya ◽  
Gregory A. Macrae

Sign in / Sign up

Export Citation Format

Share Document