displacement response
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 66)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Bowen Yan ◽  
Yangjin Yuan ◽  
Dalong Li ◽  
Ke Li ◽  
Qingshan Yang ◽  
...  

The semi-periodic vortex-shedding phenomenon caused by flow separation at the windward corners of a rectangular cylinder would result in significant vortex-induced vibrations (VIVs). Based on the aeroelastic experiment of a rectangular cylinder with side ratio of 1.5:1, 2-dimensional (2D) and 2.5-dimensional (2.5D) numerical simulations of the VIV of a rectangular cylinder were comprehensively validated. The mechanism of VIV of the rectangular cylinder was in detail discussed in terms of vortex-induced forces, aeroelastic response, work analysis, aerodynamic damping ratio and flow visualization. The outcomes showed that the numerical results of aeroelastic displacement in the cross-wind direction and the vortex-shedding procedure around the rectangular cylinder were in general consistence with the experimental results by 2.5D numerical simulation. In both simulations, the phase difference between the lift and displacement response increased with the reduced wind speed and the vortex-induced resonance (VIR) disappeared at the phase difference of approximately 180∘. The work done by lift force shows a close relationship with vibration amplitudes at different reduced wind speeds. In 2.5D simulations, the lift force of the rectangular cylinder under different wind speeds would be affected by the presence of small-scale vortices in the turbulence flow field. Similarly, the phase difference between lift force and displacement response was not a constant with the same upstream wind speed. Aerodynamic damping identified from the VIV was mainly dependent on the reduced wind speed and negative damping ratios were revealed at the lock-in regime, which also greatly influenced the probability density function (PDF) of wind-induced displacement.


Author(s):  
Yan Shen ◽  
Yang Xu ◽  
Xiaowei Sheng ◽  
Xianbo Yin

Micro-vibrations on-board a satellite have degrading effects on the performance of certain payloads like observation cameras. The major sources of vibrations include momentum wheels, solar array drives, other rotary mechanical equipment, etc. These vibrations result in loss of the pointing precision and image quality of the payload through intricate transfer paths. To improve the accuracy of a satellite system with many vibration sources and complex transfer paths, it is necessary to determine the main transfer path of vibration. In this study, a path identification method is proposed and applied to the transfer system from the momentum wheel to the camera mount. First, the observer/Kalman filter identification (OKID) algorithm is used to acquire the state-space equation of each path subsystem. Then, the subsystem order is obtained based on the slope of the singular entropy increment. In the next phase, combined with the measured disturbance force of the momentum wheel, the displacement response of the target point is predicted. Finally, the dominant transfer path of vibration is achieved by calculating the vibration contribution of each path to the response point. The results indicate that the dominant transfer path is the axial path of the horizontal momentum wheel, which contributes to the vibration of the camera mount at most. Effective vibration reduction measures should be taken to this path to suppress the vibration signal. In comparing the identified displacement response with the finite element response of the camera mount under different noise conditions, the correlation coefficients are >0.85, which proves the accuracy and anti-noise capability of the identification method.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Botan Shen ◽  
Jin Wang ◽  
Weibing Xu ◽  
Yanjiang Chen ◽  
Weiming Yan ◽  
...  

A double-layer tuned mass damper (DTMD) has advantages of wide damping frequency band and strong robustness. At present, there is a lack of seismic design methods for high-rise structures based on DTMDs. In this study, a DTMD parameter optimisation method was proposed, with the objective of minimising the peak displacement response of a first N-order vibration modal with a vibration mass participation factor of 85%. Then, a scale model of a high-rise structure was fabricated, along with a corresponding DTMD. Different types of excitations were chosen to clarify the dynamic responses of the model with and without the DTMD, including Site-II ground motions, long-period (LP) ground motions without pulses, and near-fault pulse-type (NFPT) ground motions. The results indicate that the dynamic responses of high-rise structures under LP and NFPT ground motions are much greater than those under Site-II ground motions. The DTMD can effectively reduce the absolute displacement response, acceleration response, and strain response at the top floor of the test model. However, the DTMD has a time delay in providing the damping effect. A smaller damping ratio between the upper TMD and the controlled structure will lead to a more significant damping effect for the DTMD.


2021 ◽  
pp. 103795
Author(s):  
Sami ullah ◽  
Mohammad Ashraf ◽  
Muhammad Fahim ◽  
Muhammad Haris ◽  
Eid Badshah

2021 ◽  
Vol 11 (22) ◽  
pp. 11010
Author(s):  
Sung-Wan Kim ◽  
Da-Woon Yun ◽  
Dong-Uk Park ◽  
Sung-Jin Chang ◽  
Jae-Bong Park

Maintenance of bridges in use is essential and measuring the live load distribution factor (LLDF) of a bridge to examine bridge integrity and safety is important. A vehicle loading test has been used to measure the LLDF of a bridge. To carry this out on a bridge in use, traffic control is required because loading must be performed at designated positions using vehicles whose details are known. This makes it difficult to measure LLDF. This study proposed a method of estimating the LLDF of a bridge using the vertical displacement response caused by traveling vehicles under ambient vibration conditions in the absence of vehicle control. Since the displacement response measured from a bridge included both static and dynamic components, the static component required for the estimation of LLDF was extracted using empirical mode decomposition (EMD). The vehicle loading and ambient vibration tests were conducted to verify the validity of the proposed method. It was confirmed that the proposed method can effectively estimate the LLDF of a bridge if the vehicle type and driving lane on the bridge are identified in the ambient vibration test.


Author(s):  
C. K. Shen ◽  
D. Mi ◽  
J. W. Li

In the uncertain vibration analysis of fractionally-damped beams whose damping characteristic is described using fractional derivative model, the uncertain excitation is usually modeled as a stochastic process. However, it is often difficult to obtain sufficient samples of the excitation to establish a precise probability distribution function for the stochastic process model in practical engineering problems. Hence, in this paper, a nonrandom vibration analysis method for fractionally-damped beams is proposed to obtain the dynamic displacement response bounds of the beams under the uncertain excitation. Specifically, the uncertain excitation applied to the fractionally-damped beam is treated as a spatial-time interval field, so that the dynamic displacement response of the beam is also a space-time interval field. The middle point function and the radius function of the displacement response of the fractionally-damped beam can be derived based on the modal superposition method and the Laplace transform, through which the bound functions of the dynamic displacement response can be obtained. In addition, several numerical examples are given to demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 11 (21) ◽  
pp. 10343
Author(s):  
Liguo Jin ◽  
Xujin Liu ◽  
Hongyang Sun ◽  
Zhenghua Zhou

The interaction between subway tunnels is investigated by using a 2D analytic model of a twin tunnels system embedded in a homogenous half-space. The closed-form analytical solution for tunnel displacement response is derived through the wave function expansion method and the mirror method, and the correctness of the solution is verified through residuals convergence and comparison with the published results. The analysis focuses on the effects of tunnel relative stiffness on tunnel–soil–tunnel interaction. Tunnel relative stiffness has a great influence on tunnel displacement response. For small tunnel relative stiffness, tunnel displacement amplitude can be enlarged by 3.3 times that of single rigid tunnel model. The response of the tunnel–soil–tunnel interaction system depends not only on the distances between tunnels but also on the frequency of the incident wave and the incident angle. The strength of the interaction between the tunnels is highly related to the tunnel spacing distance. The smaller the distance between tunnels, the stronger the interaction between them. When the distance between tunnels reaches s/a = 20, the interaction between tunnels can be ignored. It is worth pointing out that the seismic design of underground tunnels should consider the interaction between tunnels when the tunnel distance is small.


2021 ◽  
Author(s):  
Mohammad Katebi ◽  
Dharma Wijewickreme ◽  
Pooneh Maghoul ◽  
Kshama Roy

A series of full-scale experiments were conducted to estimate lateral soil constraints on the pipes buried in dense sandy slopes at different burial depths. The experimental data indicated that the soil force on the pipe increases with increasing the slope grade and burial depth ratio. The lateral soil force versus relative pipe displacement response observed from the experiments is presented and compared to those arising from level ground conditions. The study was extended to larger burial depth ratios by simulating pipes under sloping ground conditions using a numerical (finite element) model that was initially calibrated using the results from physical modelling. The findings from the study in terms of the variation of peak lateral soil restraint as a function of the slope grade and burial depth ratio are presented for consideration in pipeline design.


Sign in / Sign up

Export Citation Format

Share Document