Possibility distributions of fuzzy decision variables obtained from possibilistic linear programming problems

2000 ◽  
Vol 113 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Hideo Tanaka ◽  
Peijun Guo ◽  
H.-J. Zimmermann
Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 569
Author(s):  
Wu

The numerical method for solving the fuzzy linear programming problems with fuzzydecision variables is proposed in this paper. The difficulty for solving this kind of problem is thatthe decision variables are assumed to be nonnegative fuzzy numbers instead of nonnegative realnumbers. In other words, the decision variables are assumed to be membership functions. One of thepurposes of this paper is to derive the analytic formula of error estimation regarding the approximateoptimal solution. On the other hand, the existence of optimal solutions is also studied in this paper.Finally we present two numerical examples to demonstrate the usefulness of the numerical method.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2937
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Elnaz Osgooei ◽  
Gholamreza Haseli ◽  
Hana Tomaskova

Recently, new methods have been recommended to solve fully fuzzy linear programming (FFLP) issues. Likewise, the present study examines a new approach to solve FFLP issues through fuzzy decision parameters and variables using triangular fuzzy numbers. The strategy, which is based on alpha-cut theory and modified triangular fuzzy numbers, is suggested to obtain the optimal fully fuzzy solution for real-world problems. In this method, the problem is considered as a fully fuzzy problem and then is solved by applying the new definition presented for the triangular fuzzy number to optimize decision variables and the objective function. Several numerical examples are solved to illustrate the above method.


2016 ◽  
Vol 5 (3) ◽  
pp. 1-13 ◽  
Author(s):  
Suresh Kumar Barik ◽  
M. P. Biswal

A new solution procedure of possibilistic linear programming problem is developed involving the right hand side parameters of the constraints as normal random variables with known means and variances and the objective function coefficients are considered as triangular possibility distribution. In order to solve the proposed problem, convert the problem into a crisp equivalent deterministic multi-objective mathematical programming problem and then solved by using fuzzy programming method. A numerical example is presented to illustrate the solution procedure and developed methodology.


2018 ◽  
Vol 3 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Michael Gr. Voskoglou

A Grey Linear Programming problem differs from an ordinary one to the fact that the coefficients of its objective function and / or the technological coefficients and constants of its constraints are grey instead of real numbers. In this work a new method is developed for solving such kind of problems by the whitenization of the grey numbers involved and the solution of the obtained in this way ordinary Linear Programming problem with a standard method. The values of the decision variables in the optimal solution may then be converted to grey numbers to facilitate a vague expression of it, but this must be strictly checked to avoid non creditable such expressions. Examples are also presented to illustrate the applicability of our method in real life applications.


Sign in / Sign up

Export Citation Format

Share Document