Pregnancy can induce priming of cytotoxic T lymphocytes specific for paternal HLA antigens that is associated with antibody formation

1997 ◽  
Vol 32 (3) ◽  
pp. 282-283
1996 ◽  
Vol 62 (5) ◽  
pp. 672-678 ◽  
Author(s):  
Gerda J. Bouma ◽  
Patricia Van Caubergh ◽  
Simone P. M. J. van Bree ◽  
Ria M. C. Castelli-Visser ◽  
Marian D. Witvliet ◽  
...  

1996 ◽  
Vol 47 (1-2) ◽  
pp. 162
Author(s):  
G.J. Bouma ◽  
P. van Caubergh ◽  
F.P.M.J. van Bree ◽  
R.M.C. Castelli-Visser ◽  
M.D. Witvliet ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2352-2355 ◽  
Author(s):  
Masaki Yasukawa ◽  
Hideki Ohminami ◽  
Junko Arai ◽  
Yoshihito Kasahara ◽  
Yasushi Ishida ◽  
...  

We investigated the cytotoxicity mechanisms of alloantigen-specific human CD4+ and CD8+ cytotoxic T lymphocytes (CTLs) using cells from family members with the Fas gene mutation. Alloantigen-specific CD4+ and CD8+ CTL bulk lines and clones were generated from 2 individuals by stimulation of their peripheral blood lymphocytes with allogeneic Fas−/− or Fas+/− cell lines that were established from B-lymphocytes of a patient with Fas deficiency and her mother, respectively. Both CD4+ and CD8+CTL bulk lines and clones directed against allogeneic HLA antigens exerted cytotoxicity against Fas−/− and Fas+/− cells to almost the same degree. The cytotoxicity of CD4+ and CD8+ CTLs appeared to be Ca2+-dependent and was completely inhibited by concanamycin A, an inhibitor of perforin-mediated cytotoxicity. Messenger RNAs for the major mediators of CTL cytotoxicity, Fas ligand, perforin, and granzyme B were all detected in these CD4+CTLs with the use of the reverse transcriptase polymerase chain reaction. The majority of CD4+ CTL clones that showed Fas-independent cytotoxicity were TH0, as determined by their cytokine production profile. These data, obtained with the use of a novel experimental system, clearly show that the main pathway of cytotoxicity mediated by alloantigen-specific human CD4+as well as by CD8+ CTLs is granule exocytosis, and not the Fas/Fas ligand system.


1982 ◽  
Vol 156 (4) ◽  
pp. 1065-1076 ◽  
Author(s):  
W E Biddison ◽  
P E Rao ◽  
M A Talle ◽  
G Goldstein ◽  
S Shaw

A recently described HLA gene, SB, which maps between GLO and HLA-DR, codes for Ia-like molecules that are similar to but distinct from HLA-DR molecules. Cytotoxic T lymphocytes (CTL) specific for SB1, SB2, SB3, and SB4 were compared with HLA-A2-specific CTL with respect to their surface expression of the T cell differentiation antigens OKT3, OKT4, and OKT8. All CTL activity was eliminated by treatment with OKT3 and C'. The SB-specific cytotoxicity was eliminated by OKT4 plus C' but not by OKT8 plus C'. In contrast, HLA-A2-specific killing was completely susceptible to treatment with OKT8 plus C' but not with OKT4 plus C'. Cytotoxicity was analyzed in the presence of OKT8 and a series of monoclonal antibodies (OKT4A, 4B, 4C, and 4D) that react with distinct epitopes on the OKT4 molecule. SB1-, SB3-, and SB4-specific CTL were partially inhibited by OKT4A and 4B (45-75%), whereas HLA-A2-specific CTL were partially inhibited by OKT8 (48-63%) but not by OKT4. SB2-specific CTL were not inhibited (less than 26%) by OKT8 or by any of the OKT4-related antibodies. These results suggest that the OKT4 marker may be expressed on most T cells that recognize allogeneic Ia or self Ia plus foreign antigens; OKT4+ cells do not appear to be functionally homogeneous in that they can act both as helper/inducer and cytotoxic cells. Models are proposed for the functional involvement of the OKT4 molecule in T cell-Ia antigen interactions.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2352-2355 ◽  
Author(s):  
Masaki Yasukawa ◽  
Hideki Ohminami ◽  
Junko Arai ◽  
Yoshihito Kasahara ◽  
Yasushi Ishida ◽  
...  

Abstract We investigated the cytotoxicity mechanisms of alloantigen-specific human CD4+ and CD8+ cytotoxic T lymphocytes (CTLs) using cells from family members with the Fas gene mutation. Alloantigen-specific CD4+ and CD8+ CTL bulk lines and clones were generated from 2 individuals by stimulation of their peripheral blood lymphocytes with allogeneic Fas−/− or Fas+/− cell lines that were established from B-lymphocytes of a patient with Fas deficiency and her mother, respectively. Both CD4+ and CD8+CTL bulk lines and clones directed against allogeneic HLA antigens exerted cytotoxicity against Fas−/− and Fas+/− cells to almost the same degree. The cytotoxicity of CD4+ and CD8+ CTLs appeared to be Ca2+-dependent and was completely inhibited by concanamycin A, an inhibitor of perforin-mediated cytotoxicity. Messenger RNAs for the major mediators of CTL cytotoxicity, Fas ligand, perforin, and granzyme B were all detected in these CD4+CTLs with the use of the reverse transcriptase polymerase chain reaction. The majority of CD4+ CTL clones that showed Fas-independent cytotoxicity were TH0, as determined by their cytokine production profile. These data, obtained with the use of a novel experimental system, clearly show that the main pathway of cytotoxicity mediated by alloantigen-specific human CD4+as well as by CD8+ CTLs is granule exocytosis, and not the Fas/Fas ligand system.


Sign in / Sign up

Export Citation Format

Share Document