t cell recognition
Recently Published Documents


TOTAL DOCUMENTS

677
(FIVE YEARS 46)

H-INDEX

70
(FIVE YEARS 4)

2022 ◽  
Vol 74 ◽  
pp. 9-17
Author(s):  
Sylvain Simon ◽  
Grace Bugos ◽  
Alex I Salter ◽  
Stanley R Riddell

2022 ◽  
Author(s):  
Vivek Naranbhai ◽  
Anusha Nathan ◽  
Clarety Kaseke ◽  
Cristhian Berrios ◽  
Ashok Khatri ◽  
...  

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (~21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.


2021 ◽  
Author(s):  
Malcolm J. W. Sim ◽  
Zachary Stotz ◽  
Jinghua Lu ◽  
Paul Brennan ◽  
Eric O. Long ◽  
...  

Dimorphic residues at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen specific T cell receptors (TCR) discriminated groups C1 and C2 HLA-C, due to effects on peptide presentation and TCR affinity. Structural and functional experiments combined with immunopeptidomics analysis revealed that C1-HLA-C favors smaller amino acids at the peptide C-terminus minus-1 position (pΩ-1), and that larger pΩ-1 residues diminished TCR recognition of C1-HLA-C. After controlling for peptide presentation, TCRs exhibited weaker affinities for C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism impacts peptide presentation and HLA-C restricted T cell responses, with implications in multiple disease contexts including adoptive T cell therapy targeting KRAS-G12D-induced cancers.


Hepatology ◽  
2021 ◽  
Author(s):  
Adrian Kuipery ◽  
Juan Diego Sanchez Vasquez ◽  
Aman Mehrotra ◽  
Jordan J. Feld ◽  
Harry L. A. Janssen ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A795-A795
Author(s):  
Rana Falahat ◽  
Patricio Perez-Villarroel ◽  
Anders Berglund ◽  
Shari Pilon-Thomas ◽  
Glen Barber ◽  
...  

BackgroundWhile STING-activating agents have shown limited efficacy in early phase clinical trials, multiple lines of evidence suggest the importance of the so far unappreciated tumor cell-intrinsic STING function in antitumor immune responses. Accordingly, we have shown that although there is a widespread impairment of STING signaling among human melanomas, its restoration through epigenetic reprogramming can augment antigenicity and T cell recognition of melanoma cells.1 2 In this study, we determined if rescue of tumor cell-intrinsic STING signaling using a DNA methyltransferase inhibitor can improve the therapeutic efficacy of a STING agonist in mouse models of melanoma.MethodsWe subjected three distinct murine melanoma cell lines (B16-F10, B16-ISG and Yumm1.7) to treatment with 5-aza-2'-deoxycytidine (5AZADC) and evaluated their activation of STING following stimulation with the STING agonist ADU-S100. Using a B16-F10 subcutaneous model, we assessed the effect of 5AZADC treatment on the efficacy of intratumorally administered ADU-S100 in STINGgt/gt mice. Additionally, we performed mechanistic studies using T-cell depletion experiments as well as phenotypic and gene expression profiling.ResultsWe observed reconstitution of cGAS in all three 5AZADC-pretreated cell lines as well as up to a 46-fold increase in induction of IFN-beta (p < 0.001) and a 4.5-fold increase in MHC class I surface expression (p < 0.01) compared to untreated controls following stimulation with ADU-S100. In B16-F10 tumor-bearing mice, while treatment with a combination of 5AZADC plus ADU-S100 resulted in a marked increase in Ifnb1 transcripts within tumors (p < 0.001), it significantly delayed tumor growth compared to treatment with ADU-S100 alone (p = 0.0244 on day 22). Antibody-mediated depletion studies in mice receiving the combination therapy further indicated that this antitumor activity depends on the generation of functional tumor antigen-specific CD8+ T cells (p = 0.0111 on day 22); however, tumor growth remained unaltered by the depletion of CD4+ T cells.ConclusionsWe show that reversal of methylation silencing of cGAS in murine melanoma cell lines using a clinically available DNA methylation inhibitor can improve agonist-induced STING activation and type I IFN induction, which in tumor-bearing mice is capable of inducing tumor regression through a CD8+ T cell-dependent immune response. These findings not only provide mechanistic insight into how STING signaling dysfunction in tumor cells can contribute to impaired responses to STING agonist therapy, but also suggest, depending on tumor cell-intrinsic STING signaling status, its pharmacologic restoration should be considered for improving therapeutic efficacy of STING agonists in future clinical studies.AcknowledgementsFunding: NCI P50 CA168536, Cindy and Jon Gruden Fund, Chris Sullivan Fund, V Foundation, Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.ReferencesFalahat R, Perez-Villarroel P, Mailloux AW, Zhu G, Pilon-Thomas S, Barber GN, Mulé JJ. STING signaling in melanoma cells shapes antigenicity and can promote antitumor T-cell activity. Cancer Immunol Res 2019;7(11):1837–48.Falahat R, Berglund A, Putney RM, Perez-Villarroel P, Aoyama S, Pilon-Thomas S, Barber GN, Mulé JJ. Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. PNAS 2021;118(15).


2021 ◽  
Author(s):  
Elham Khatamzas ◽  
Maximilian Muenchhoff ◽  
Alexandra Rehn ◽  
Alexander Graf ◽  
Johannes Hellmuth ◽  
...  

Abstract ​​Since its recent zoonotic spill-over severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is constantly adapting to the human host as illustrated by the emergence of variants of concern with increased transmissibility and immune evasion. Prolonged replication in immunosuppressed individuals and evasion from spike-specific antibodies is known to drive intra-host SARS-CoV-2 evolution. Here we show for the first time the major role of CD8 T cells in SARS-CoV-2 evolution. In a patient with chronic, ultimately fatal infection, we observed three spike mutations that prevented neutralisation by convalescent plasma therapy. Moreover, at least four mutations in non-spike proteins emerged that hampered CD8 T-cell recognition of mutant epitopes, two of these occurred before spike mutations. A comparison with worldwide sequencing data showed that several of these T-cell escape mutations had emerged independently as homoplasies in multiple circulating lineages. We propose that human leukocyte antigen class I contributes to shaping the evolutionary landscape of SARS-CoV-2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro F. Alice ◽  
Gwen Kramer ◽  
Shelly Bambina ◽  
Keith S. Bahjat ◽  
Michael J. Gough ◽  
...  

AbstractGamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.


2021 ◽  
Vol 2 (5) ◽  
pp. 100286
Author(s):  
Daniel M. Altmann ◽  
Catherine J. Reynolds ◽  
Rosemary J. Boyton

Sign in / Sign up

Export Citation Format

Share Document