functional involvement
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 55)

H-INDEX

40
(FIVE YEARS 5)

Author(s):  
Patrick Hillebrand ◽  
Markus Westner

AbstractAlthough the average tenure of CIOs has increased over the last years, the majority of CIOs have been in their positions for only three years or less. Nevertheless, some CIOs have been successful in their position for a long time. In this study, we use tenure as a proxy for success as a CIO. The goal of this paper is to examine factors that are critical to the success of long-term CIOs. For this purpose, we created and analyzed resumes of 384 CIOs. Out of these 384, we conducted 19 interviews with CIOs from top-tier companies and collected and analyzed both qualitative and quantitative data. In the process, we were able to identify nine factors that are critical for the success (CSF) of CIOs. These factors fall into three categories. Category “Personality” includes “Accepting and embracing change” (CSF #1), “Being perseverant to pursue long-term goals” (CSF #2), “Anticipating the future through visionary thinking” (CSF #3), and “Being empathetic to deal with uncertainty felt by co-workers” (CSF #4). The “Role Fulfilment” category includes “Cross-functional involvement and integration of the IT organization” (CSF #5), “Positioning and restructuring of the IT organization” (CSF #6), and “Well-connected and communicative leadership” (CSF #7). The “Organizational Environment” category consists of “Availability of skilled workforce” (CSF #8) and “Reporting line to the CEO” (CSF #9). CSFs 1, 2, and 3 were perceived as most important by the participating CIOs. The results may be of particular interest both to aspiring CIOs and equally their employing organizations, as they reflect what long-term CIOs value during their time in office.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1556
Author(s):  
Francisco Navarrete ◽  
María S. García-Gutiérrez ◽  
Ani Gasparyan ◽  
Daniela Navarro ◽  
Jorge Manzanares

The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jing Qi ◽  
Bo-Zhi Li ◽  
Ying Zhang ◽  
Bei Pan ◽  
Yu-Hong Gao ◽  
...  

Background: Sleep deprivation can markedly influence vigilant attention that is essential to complex cognitive processes. The hypothalamus plays a critical role in arousal and attention regulation. However, the functional involvement of the hypothalamus in attentional impairments after total sleep deprivation (TSD) remains unclear. The purpose of this study is to investigate the alterations in hypothalamic functional connectivity and its association with the attentional performance following TSD.Methods: Thirty healthy adult males were recruited in the study. Participants underwent two resting-state functional magnetic resonance imaging (rs-fMRI) scans, once in rested wakefulness (RW) and once after 36 h of TSD. Seed-based functional connectivity analysis was performed using rs-fMRI for the left and right hypothalamus. Vigilant attention was measured using a psychomotor vigilance test (PVT). Furthermore, Pearson correlation analysis was conducted to investigate the relationship between altered hypothalamic functional connectivity and PVT performance after TSD.Results: After TSD, enhanced functional connectivity was observed between the left hypothalamus and bilateral thalamus, bilateral anterior cingulate cortex, right amygdala, and right insula, while reduced functional connectivity was observed between the left hypothalamus and bilateral middle frontal gyrus (AlphaSim corrected, P < 0.01). However, significant correlation between altered hypothalamic functional connectivity and PVT performance was not observed after Bonferroni correction (P > 0.05).Conclusion: Our results suggest that TSD can lead to disrupted hypothalamic circuits, which may provide new insight into neural mechanisms of attention impairments following sleep deprivation.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1391
Author(s):  
Battistelli Michela

Liquid biopsies could be considered an excellent diagnostic tool, in different physiological or pathological conditions. The possibility of using liquid biopsies for non-invasive clinical purposes is quite an old idea: indeed many years ago it was already being used in the field of non-invasive prenatal tests (NIPT) for autosomal fetal aneuploidy evaluation. In 1997 Lo et al. had identified fetal DNA in maternal plasma and serum, showing that about 10–15% of cfDNA in maternal plasma is derived from the placenta, and biologic fluid represents an important and non-invasive technique to evaluate state diseases and possible therapies. Nowadays, several body fluids, such as blood, urine, saliva and other patient samples, could be used as liquid biopsy for clinical non-invasive evaluation. These fluids contain numerous and various biomarkers and could be used for the evaluation of pathological and non-pathological conditions. In this review we will analyze the different types of liquid biopsy, their potential role in clinical diagnosis and the functional involvement of extracellular vesicles in these fluids as carriers.


2021 ◽  
pp. 1-8
Author(s):  
Laura E. Ramos-Languren ◽  
Roberto Rodríguez-Labrada ◽  
Jonathan J. Magaña ◽  
Nalia Canales-Ochoa ◽  
Yanetza González-Zaldivar ◽  
...  

<b><i>Background:</i></b> Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant disorder caused by a mutation in the <i>ATXN7</i> gene. The involvement of the brainstem auditory pathway in pathogenesis of this disease has not been systematically assessed. <b><i>Aim:</i></b> To determine involvement of the brainstem auditory pathway in SCA7 patients and its relationship to clinical features of the disease. <b><i>Methods:</i></b> In this case-control study, brainstem auditory-evoked potentials (BAEPs) were assessed in 12 SCA7 patients with clinical and molecular diagnosis, compared to 2 control groups of 16 SCA2 patients and 16 healthy controls. <b><i>Results:</i></b> SCA7 patients exhibited significant prolongation of I-wave and III-wave latencies, whereas SCA2 patients showed increased latencies for III and V waves and I–III interpeak interval. SCA7 patients with larger I-wave latencies exhibited larger CAG repeats, earlier onset age, and higher SARA scores, but in SCA2 cases, these were not observed. <b><i>Conclusions:</i></b> BAEP tests revealed functional involvement of the auditory pathway in SCA7 (mainly at) peripheral portions, which gave new insights into the disease physiopathology different from SCA2 and may unravel distinct pathoanatomical effects of polyQ expansions in the central nervous system. <b><i>Significance:</i></b> These findings offer important insights into the distinctive disease mechanisms in SCA7 and SCA2, which could be useful for differential diagnosis and designing specific precision medicine approaches for both conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suyun Wei ◽  
Yingnan Chen ◽  
Jing Hou ◽  
Yonghua Yang ◽  
Tongming Yin

The phytohormone auxin plays a pivotal role in the regulation of plant growth and development, including vascular differentiation and tree growth. The auxin/indole-3-acetic acid (Aux/IAA) and auxin response transcription factor (ARF) genes are key components of plant auxin signaling. To gain more insight into the regulation and functional features of Aux/IAA and ARF genes during these processes, we identified 38 AUX/IAA and 34 ARF genes in the genome of Salix suchowensis and characterized their gene structures, conserved domains, and encoded amino acid compositions. Phylogenetic analysis of some typical land plants showed that the Aux/IAA and ARF genes of Salicaceae originated from a common ancestor and were significantly amplified by the ancestral eudicot hexaploidization event and the “salicoid” duplication that occurred before the divergence of poplar and willow. By analyzing dynamic transcriptome profiling data, some Aux/IAA and ARF genes were found to be involved in the regulation of plant growth, especially in the initial plant growth process. Additionally, we found that the expression of several miR160/miR167-ARFs was in agreement with canonical miRNA–ARF interactions, suggesting that miRNAs were possibly involved in the regulation of the auxin signaling pathway and the plant growth process. In summary, this study comprehensively analyzed the sequence features, origin, and expansion of Aux/IAA and ARF genes, and the results provide useful information for further studies on the functional involvement of auxin signaling genes in the plant growth process.


Author(s):  
A. Surget ◽  
C. Belzung

AbstractAdult hippocampal neurogenesis (AHN) represents a remarkable form of neuroplasticity that has increasingly been linked to the stress response in recent years. However, the hippocampus does not itself support the expression of the different dimensions of the stress response. Moreover, the main hippocampal functions are essentially preserved under AHN depletion and adult-born immature neurons (abGNs) have no extrahippocampal projections, which questions the mechanisms by which abGNs influence functions supported by brain areas far from the hippocampus. Within this framework, we propose that through its computational influences AHN is pivotal in shaping adaption to environmental demands, underlying its role in stress response. The hippocampus with its high input convergence and output divergence represents a computational hub, ideally positioned in the brain (1) to detect cues and contexts linked to past, current and predicted stressful experiences, and (2) to supervise the expression of the stress response at the cognitive, affective, behavioral, and physiological levels. AHN appears to bias hippocampal computations toward enhanced conjunctive encoding and pattern separation, promoting contextual discrimination and cognitive flexibility, reducing proactive interference and generalization of stressful experiences to safe contexts. These effects result in gating downstream brain areas with more accurate and contextualized information, enabling the different dimensions of the stress response to be more appropriately set with specific contexts. Here, we first provide an integrative perspective of the functional involvement of AHN in the hippocampus and a phenomenological overview of the stress response. We then examine the mechanistic underpinning of the role of AHN in the stress response and describe its potential implications in the different dimensions accompanying this response.


2021 ◽  
Author(s):  
Ryan Edward Tyler ◽  
Maya N Bluitt ◽  
Julie L Engers ◽  
Craig L Lindsley ◽  
Joyce Besheer

A stressor can trigger adaptations that contribute to neuropsychiatric disorders. Predator odor (TMT) exposure is an innate stressor that produces lasting adaptations. TMT exposure may activate metabotropic glutamate receptor 3 (mGlu3), triggering excitatory corticolimbic adaptations that underlie behavioral changes. To evaluate functional involvement, the mGlu3 negative allosteric modulator (NAM, VU6010572; 3 mg/kg, i.p.) was administered before TMT exposure in male, Long Evans rats. Two weeks after stressor, rats underwent behavioral testing (context re-exposure, zero maze and acoustic startle response) followed by RT-PCR gene expression in the insular cortex and BNST. During the TMT exposure, rats displayed stress-reactive behaviors that were not affected by the VU6010572. During the context re-exposure, prior TMT exposure and VU6010572 pretreatment both produced a hyperactive response. TMT exposure did not affect zero maze or ASR measures, but VU6010572 increased time spent in the open arms and habituation to ASR, indicating anxiolytic-like effects. In the insular cortex, TMT exposure resulted in excitatory adaptations as shown by increased expression of mGlu (Grm3, Grm5), NMDA (GriN2A, GriN2B, GriN2C, GriN3A, GriN3B) and AMPA (GriA3) receptor transcripts. Interestingly, mGlu3 signaling during stressor mediated GriN3B upregulation. Stress reactivity during TMT exposure was associated with Grm5, GriN2A, GriN2C, and GriA3 upregulation in the insular cortex and context re-exposure reactivity in the TMT/vehicle, but not the TMT/mGlu3 NAM group. In the BNST, GriN2A, GriN2B and GriN3B were increased by VU6010572, but TMT prevented these effects. These data demonstrate that mGlu3 signaling contributes to the lasting behavioral and molecular adaptations of predator odor stressor.


Sign in / Sign up

Export Citation Format

Share Document