t lymphocytes
Recently Published Documents





2022 ◽  
Vol 103 ◽  
pp. 108448
Seema Devi ◽  
Amy M. Zimmermann-Klemd ◽  
Bernd L. Fiebich ◽  
Michael Heinrich ◽  
Carsten Gründemann ◽  

2022 ◽  
Vol 12 ◽  
John E. Greenlee ◽  
Noel G. Carlson ◽  
Justin R. Abbatemarco ◽  
Ida Herdlevær ◽  
Stacey L. Clardy ◽  

Autoimmune and paraneoplastic encephalitides represent an increasingly recognized cause of devastating human illness as well as an emerging area of neurological injury associated with immune checkpoint inhibitors. Two groups of antibodies have been detected in affected patients. Antibodies in the first group are directed against neuronal cell surface membrane proteins and are exemplified by antibodies directed against the N-methyl-D-aspartate receptor (anti-NMDAR), found in patients with autoimmune encephalitis, and antibodies directed against the leucine-rich glioma-inactivated 1 protein (anti-LGI1), associated with faciobrachial dystonic seizures and limbic encephalitis. Antibodies in this group produce non-lethal neuronal dysfunction, and their associated conditions often respond to treatment. Antibodies in the second group, as exemplified by anti-Yo antibody, found in patients with rapidly progressive cerebellar syndrome, and anti-Hu antibody, associated with encephalomyelitis, react with intracellular neuronal antigens. These antibodies are characteristically found in patients with underlying malignancy, and neurological impairment is the result of neuronal death. Within the last few years, major advances have been made in understanding the pathogenesis of neurological disorders associated with antibodies against neuronal cell surface antigens. In contrast, the events that lead to neuronal death in conditions associated with antibodies directed against intracellular antigens, such as anti-Yo and anti-Hu, remain poorly understood, and the respective roles of antibodies and T lymphocytes in causing neuronal injury have not been defined in an animal model. In this review, we discuss current knowledge of these two groups of antibodies in terms of their discovery, how they arise, the interaction of both types of antibodies with their molecular targets, and the attempts that have been made to reproduce human neuronal injury in tissue culture models and experimental animals. We then discuss the emerging area of autoimmune neuronal injury associated with immune checkpoint inhibitors and the implications of current research for the treatment of affected patients.

2022 ◽  
Vol 13 (1) ◽  
pp. 6
David Sergeevichev ◽  
Victor Balashov ◽  
Victoria Kozyreva ◽  
Sophia Pavlova ◽  
Maria Vasiliyeva ◽  

Many research groups have developed various types of tissue-engineered cardiac constructs. However, the immunological properties of such artificial tissues are not yet fully understood. Previously, we developed microfiber scaffolds carrying human iPSC-derived cardiomyocytes (hiPSC-CM). In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins on T lymphocytes, which are early markers of the immune response. For this purpose, electrospun PLA microfiber scaffolds were seeded with hiPSC-CM and cultured for 2 weeks. Allogeneic mononuclear cells were then co-cultured for 48 h with three groups of samples: bare scaffolds, pure cardiomyocyte culture and tissue-engineered constructs, followed by analysis of CD28/CTLA-4 expression on T lymphocytes using flow cytometry. PLA scaffolds and concanavalin A stimulation (positive control) statistically significantly increased CD28 expression on CD4+ T cells (up to 61.3% and 66.3%) CD8+ T cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression was not increased when T lymphocytes were co-cultured with cardiac tissue-engineered constructs and iPSC-CM monolayers. Thus, iPSC-CM in monolayers and on PLA microfiber scaffolds did not induce T cell activation, which suggests that such cardiac constructs would not be a cause of rejection after implantation.

2022 ◽  
Vol 13 (1) ◽  
Mari Kamiya ◽  
Fumitaka Mizoguchi ◽  
Kimito Kawahata ◽  
Dengli Wang ◽  
Masahiro Nishibori ◽  

AbstractMuscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.

2022 ◽  
Flavia Ferrantelli ◽  
Chiara Chiozzini ◽  
Francesco Manfredi ◽  
Patrizia Leone ◽  
Massimo Spada ◽  

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.

2022 ◽  
pp. 94-101
E. Yu. Evdokimov ◽  
Zh. B. Ponezheva ◽  
E. V. Svechnikova ◽  
A. V. Sundukov

Introduction. Psoriasis is an inflammatory dermatosis, which has characteristic clinical features and is closely associated with immunological changes in the skin. HIV-infected patients suffering from psoriasis have immunological features associated with the effect of HIV virus on CD4+T-lymphocytes.Aim. To identify clinical features of psoriasis in HIV-infected patients depending on the stage of HIV infection and immune status.Materials and methods. An open prospective study (2014–2018) included 143 patients with psoriasis vulgaris, of which 79 (55.2%) were infected with HIV and 64 (44.8%) were not infected with HIV. The groups were comparable in terms of age and gender. The diagnosis of psoriasis vulgaris was established with due account for its clinical presentation and histologically confirmed in 29 (20.3%) patients, of which 17 (58.6%) were infected with HIV and 12 (41.4%) were not infected with HIV. In a biopsy, tissue samples were taken from the areas of inflammatory and healthy skin in each patient. Numbers of CD4+ and CD8+T-lymphocytes in the biopsy samples obtained were calculated using immunohistochemical staining of biopsy. The severity of psoriasis progress was assessed using the psoriasis lesions severity index, taking into account the body surface area covered by lesions, the intensity of erythema, infiltration and sloughing of skin. In the course of the study, the patients had general clinical examinations performed, their HIV infection confirmed or denied, their immune status assessed, and their clinical stage of HIV infection determined.Results and discussion. Mild psoriasis was less often identified, and moderately severe and severe psoriasis was more often observed in HIV-infected patients as compared to HIV-negative patients. The psoriatic plaque CD8+T-lymphocyte counts in HIV-infected patients grew with increasing immunosuppression and clinical stage of HIV infection; these changes were not observed in HIV-negative patients.Сonclusion. HIV-infected patients often have moderately severe (39.2%) and severe (22.8%) psoriasis vulgaris. The psoriatic plaque CD8+T-lymphocyte counts in HIV-infected patients predominate over the CD4+T-lymphocyte counts, while the HIV-negative patients show the opposite test results.

2022 ◽  
pp. 030098582110691
Jeann Leal de Araújo ◽  
Raquel R. Rech ◽  
Aline Rodrigues-Hoffmann ◽  
Paula R. Giaretta ◽  
Cinthya Cirqueira ◽  

Proventricular dilatation disease is a lethal disease of psittacine birds. In this study, we characterized the local cellular immune response in the brain, proventriculus, and small intestine of 27 cockatiels ( Nymphicus hollandicus) experimentally infected with parrot bornavirus 2 (PaBV-2). Perivascular cuffs in the brain were composed of CD3+ T-lymphocytes and Iba1+ macrophages/microglia in most cockatiels (n = 26). In the ganglia of the proventriculus, CD3+ T-lymphocytes (n = 17) and Iba1+ macrophages (n = 13) prevailed. The ganglia of the small intestine had a more homogeneous distribution of these leukocytes, including PAX5+ B-lymphocytes (n = 9), CD3+ T-lymphocytes (n = 8), and Iba1+ macrophages (n = 8). Our results indicate that perivascular cuffs in the brain and the inflammatory infiltrate in the proventriculus of PaBV-2-infected cockatiels is predominately composed of T-lymphocytes, while the inflammatory infiltrates in the ganglia of the small intestine are characterized by a mixed infiltrate composed of T-lymphocytes, B-lymphocytes, and macrophages.

2022 ◽  
pp. ji2001358
Eigo Kawahara ◽  
Mitsuki Azuma ◽  
Hiroyuki Nagashima ◽  
Koki Omori ◽  
Sho Akiyama ◽  

Sign in / Sign up

Export Citation Format

Share Document