A note on an asymptotic solution of the cylindrical Korteweg–de Vries equation

Wave Motion ◽  
1999 ◽  
Vol 30 (1) ◽  
pp. 1-16 ◽  
Author(s):  
R.S. Johnson
1973 ◽  
Vol 60 (4) ◽  
pp. 813-824 ◽  
Author(s):  
R. S. Johnson

The variable-coefficient Korteweg–de Vries equation \[ H_X + {\textstyle\frac{3}{2}}d^{-\frac{7}{4}}HH_{\xi} + {\textstyle\frac{1}{6}}\kappa d^{\frac{1}{2}}H_{\xi\xi\xi} = 0 \] with d = d(εX) is discussed for solitary-wave initial profiles. A straightforward asymptotic solution for ε → 0 is constructed and is shown to be non-uniform both ahead of and behind the solitary wave. The behaviour ahead is rectified by matching to the appropriate exponential form and, together with the use of conservation laws for the equation, the nature of the solution behind the solitary wave is discussed. This leads to the formulation of the solution in the oscillatory ‘tail’, which is again matched directly.The results are applied to the development of the solitary wave into variable-depth water, and the predictions are compared with those obtained, for example, by Grimshaw (1970, 1971). Finally, the asymptotic behaviour of both the solitary wave and the oscillatory tail are assessed in the light of some numerical integrations of the equation.


2021 ◽  
Vol 8 (3) ◽  
pp. 368-378
Author(s):  
S. I. Lyashko ◽  
◽  
V. H. Samoilenko ◽  
Yu. I. Samoilenko ◽  
N. I. Lyashko ◽  
...  

The paper deals with the Korteweg-de Vries equation with variable coefficients and a small parameter at the highest derivative. The non-linear WKB technique has been used to construct the asymptotic step-like solution to the equation. Such a solution contains regular and singular parts of the asymptotics. The regular part of the solution describes the background of the wave process, while its singular part reflects specific features associated with soliton properties. The singular part of the searched asymp\-totic solution has the main term that, like the soliton solution, is the quickly decreasing function of the phase variable $\tau$. In contrast, other terms do not possess this property. An algorithm of constructing asymptotic step-like solutions to the singularly perturbed Korteweg--de Vries equation with variable coefficients is presented. In some sense, the constructed asymptotic solution is similar to the soliton solution to the Korteweg-de Vries equation $u_t+uu_x+u_{xxx}=0$. Statement on the accuracy of the main term of the asymptotic solution is proven.


The slowly varying solitary wave is constructed as an asymptotic solution of the variable coefficient Korteweg-de Vries equation. A multiple scale method is used to determine the amplitude and phase of the wave to the second order in the perturbation parameter. The structure ahead and behind the solitary wave is also determined, and the results are interpreted by using conservation laws. Outer expansions are introduced to remove non-uniformities in the expansion. Finally, when the coefficients satisfy a certain constraint, an exact solution is constructed.


Author(s):  
V. H. Samoilenko ◽  
Yu. I. Samoilenko ◽  
V. S. Vovk

The paper deals with the singularly perturbed Korteweg-de Vries equation with variable coefficients. An algorithm for constructing asymptotic one-phase soliton-like solutions of this equation is described. The algorithm is based on the nonlinear WKB technique. The constructed asymptotic soliton-like solutions contain a regular and singular part. The regular part of this solution is the background function and consists of terms, which are defined as solutions to the system of the first order partial differential equations. The singular part of the asymptotic solution characterizes the soliton properties of the asymptotic solution. These terms are defined as solutions to the system of the third order partial differential equations. Solutions of these equations are obtained in a special way. Firstly, solutions of these equations are considered on the so-called discontinuity curve, and then these solutions are prolongated into a neighborhood of this curve. The influence of the form of the coefficients of the considered equation on the form of the equation for the discontinuity curve is analyzed. It is noted that for a wide class of such coefficients the equation for the discontinuity curve has solution that is determined for all values of the time variable. In these cases, the constructed asymptotic solutions are determined for all values of the independent variables. Thus, in the case of a zero background, the asymptotic solutions are certain deformations of classical soliton solutions.


2020 ◽  
Vol 2020 (2) ◽  
pp. 85-98
Author(s):  
A.B. Khasanov ◽  
T.J. Allanazarova
Keyword(s):  
De Vries ◽  

Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau-Korteweg-de Vries equation describes the wave-wave and wave-wall interactions. In this paper, we prove that, as the diffusion parameter is near zero, it coincides with the Korteweg-de Vries equation. The proof relies on deriving suitable a priori estimates together with an application of the Aubin-Lions Lemma.


2021 ◽  
Vol 1978 (1) ◽  
pp. 012031
Author(s):  
Ningbo Guo ◽  
Yaming Chen ◽  
Xiaogang Deng

Sign in / Sign up

Export Citation Format

Share Document