mp23, a Theileria parva transmembrane protein with homology to the protein disulfide isomerase family

2002 ◽  
Vol 121 (2) ◽  
pp. 265-268 ◽  
Author(s):  
Thomas Ebel ◽  
Klaus Bender ◽  
Ursula Böcskör ◽  
Bernd R. Binder ◽  
Joachim Lipp
2007 ◽  
Vol 282 (46) ◽  
pp. 33859-33867 ◽  
Author(s):  
Johannes Haugstetter ◽  
Michael Andreas Maurer ◽  
Thomas Blicher ◽  
Martin Pagac ◽  
Gerhard Wider ◽  
...  

Disulfide bond formation in the endoplasmic reticulum is catalyzed by enzymes of the protein disulfide-isomerase family that harbor one or more thioredoxin-like domains. We recently discovered the transmembrane protein TMX3, a thiol-disulfide oxidoreductase of the protein disulfide-isomerase family. Here, we show that the endoplasmic reticulum-luminal region of TMX3 contains three thioredoxin-like domains, an N-terminal redox-active domain (named a) followed by two enzymatically inactive domains (b and b′). Using the recombinantly expressed TMX3 domain constructs a, ab, and abb′, we compared structural stability and enzymatic properties. By structural and biophysical methods, we demonstrate that the reduced a domain has features typical of a globular folded domain that is, however, greatly destabilized upon oxidization. Importantly, interdomain stabilization by the b domain renders the a domain more resistant toward chemical denaturation and proteolysis in both the oxidized and reduced form. In combination with molecular modeling studies of TMX3 abb′, the experimental results provide a new understanding of the relationship between the multidomain structure of TMX3 and its function as a redox enzyme. Overall, the data indicate that in addition to their role as substrate and co-factor binding domains, redox-inactive thioredoxin-like domains also function in stabilizing neighboring redox-active domains.


Leukemia ◽  
2018 ◽  
Vol 33 (4) ◽  
pp. 1011-1022 ◽  
Author(s):  
Reeder M. Robinson ◽  
Leticia Reyes ◽  
Ravyn M. Duncan ◽  
Haiyan Bian ◽  
Allen B. Reitz ◽  
...  

2019 ◽  
Vol 57 (4) ◽  
pp. 274-282 ◽  
Author(s):  
Shereen Georges Ghosh ◽  
Lu Wang ◽  
Martin W Breuss ◽  
Joshua D Green ◽  
Valentina Stanley ◽  
...  

BackgroundProtein disulfide isomerase (PDI) proteins are part of the thioredoxin protein superfamily. PDIs are involved in the formation and rearrangement of disulfide bonds between cysteine residues during protein folding in the endoplasmic reticulum and are implicated in stress response pathways.MethodsEight children from four consanguineous families residing in distinct geographies within the Middle East and Central Asia were recruited for study. All probands showed structurally similar microcephaly with lissencephaly (microlissencephaly) brain malformations. DNA samples from each family underwent whole exome sequencing, assessment for repeat expansions and confirmatory segregation analysis.ResultsAn identical homozygous variant in TMX2 (c.500G>A), encoding thioredoxin-related transmembrane protein 2, segregated with disease in all four families. This variant changed the last coding base of exon 6, and impacted mRNA stability. All patients presented with microlissencephaly, global developmental delay, intellectual disability and epilepsy. While TMX2 is an activator of cellular C9ORF72 repeat expansion toxicity, patients showed no evidence of C9ORF72 repeat expansions.ConclusionThe TMX2 c.500G>A allele associates with recessive microlissencephaly, and patients show no evidence of C9ORF72 expansions. TMX2 is the first PDI implicated in a recessive disease, suggesting a protein isomerisation defect in microlissencephaly.


2008 ◽  
Vol 384 (3) ◽  
pp. 631-640 ◽  
Author(s):  
Elvira Vitu ◽  
Einav Gross ◽  
Harry M. Greenblatt ◽  
Carolyn S. Sevier ◽  
Chris A. Kaiser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document