Characterization of a stage-specific Mr16 000 schistosomular surface glycoprotein antigen of Schistosoma mansoni

1999 ◽  
Vol 100 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Quentin D. Bickle ◽  
Joanne Oldridge
2021 ◽  
Vol 175 ◽  
pp. 406-421
Author(s):  
Iara Aimê Cardoso ◽  
Aline Kusumota Luiz de Souza ◽  
Adam Muslem George Burgess ◽  
Iain Wyllie Chalmers ◽  
Karl Francis Hoffmann ◽  
...  

1987 ◽  
Vol 105 (2) ◽  
pp. 983-990 ◽  
Author(s):  
S Jalkanen ◽  
R F Bargatze ◽  
J de los Toyos ◽  
E C Butcher

The tissue-specific homing of lymphocytes is directed by specialized high endothelial venules (HEV). At least three functionally independent lymphocyte/HEV recognition systems exist, controlling the extravasation of circulating lymphocytes into peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches or appendix), and the synovium of inflamed joints. We report here that antibodies capable of inhibiting human lymphocyte binding to one or more HEV types recognize a common 85-95-kD lymphocyte surface glycoprotein antigen, defined by the non-blocking monoclonal antibody, Hermes-1. We demonstrate that MEL-14, a monoclonal antibody against putative lymph node "homing receptors" in the mouse, functionally inhibits human lymphocyte binding to lymph node HEV but not to mucosal or synovial HEV, and cross-reacts with the 85-95-kD Hermes-1 antigen. Furthermore, we show that Hermes-3, a novel antibody produced by immunization with Hermes-1 antigen isolated from a mucosal HEV-specific cell line, selectively blocks lymphocyte binding to mucosal HEV. Such tissue specificity of inhibition suggests that MEL-14 and Hermes-3 block the function of specific lymphocyte recognition elements for lymph node and mucosal HEV, respectively. Recognition of synovial HEV also involves the 85-95-kD Hermes-1 antigen, in that a polyclonal antiserum produced against the isolated antigen blocks all three classes of lymphocyte-HEV interaction. From these studies, it is likely that the Hermes-1-defined 85-95-kD glycoprotein class either comprises a family of related but functionally independent receptors for HEV, or associates both physically and functionally with such receptors. The findings imply that related molecular mechanisms are involved in several functionally independent cell-cell recognition events that direct lymphocyte traffic.


2018 ◽  
Vol 219 ◽  
pp. 17-23 ◽  
Author(s):  
Gabriela Maggioli ◽  
Gabriel Rinaldi ◽  
Ines Giaudrone ◽  
Patricia Berasain ◽  
José F. Tort ◽  
...  

1988 ◽  
Vol 254 (2) ◽  
pp. 419-426 ◽  
Author(s):  
P M Wiest ◽  
E J Tisdale ◽  
W L Roberts ◽  
T L Rosenberry ◽  
A A F Mahmoud ◽  
...  

Biosynthetic labelling experiments with cercariae and schistosomula of the multicellular parasitic trematode Schistosoma mansoni were performed to determine whether [3H]palmitate or [3H]ethanolamine was incorporated into proteins. Parasites incorporated [3H]palmitate into numerous proteins, as judged by SDS/polyacrylamide-gel electrophoresis and fluorography. The radiolabel was resistant to extraction with chloroform, but sensitive to alkaline hydrolysis, indicating the presence of an ester bond. Further investigation of the major 22 kDa [3H]palmitate-labelled species showed that the label could be recovered in a Pronase fragment which bound detergent and had an apparent molecular mass of 1200 Da as determined by gel filtration on Sephadex LH-20. Schistosomula incubated with [3H]ethanolamine for up to 24 h incorporated this precursor into several proteins; labelled Pronase fragments recovered from the three most intensely labelled proteins were hydrophilic and had a molecular mass of approx. 200 Da. Furthermore, reductive methylation of such fragments showed that the [3H]ethanolamine bears a free amino group, indicating the lack of an amide linkage. We also evaluated the effect of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: [3H]palmitate-labelled proteins of schistosomula and surface-iodinated proteins were resistant to hydrolysis with this enzyme. In conclusion, [3H]palmitate and [3H]ethanolamine are incorporated into distinct proteins of cercariae and schistosomula which do not bear glycophospholipid anchors. The [3H]ethanolamine-labelled proteins represent a novel variety of protein modification.


Sign in / Sign up

Export Citation Format

Share Document